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Abstract—This paper contains a survey of association scheme say that association scheme theory is as old as Frobenius’
theo_ry (Wlth its alg_ebralc and _analytl_cal aspects) a_nd of_lts representation theory of finite groups (see [11]).
applications to coding theory (in a wide sense). It is mainly 1, compinatorics, an association scheme is defined in terms

concerned with a class of subjects that involve the central notion f tai larit tiesIn the " th .
of the distance distribution of a code. Special emphasis is put on of certainreguiarnty propertiesin the “group case,” tneé associ-

the linear programming method, inspired by the MacWilliams ~ation scheme structure arises from cer@immetry properties
transform. This produces upper bounds for the size of a code which directly induce the desired regularity properties. Thus
with a given minimum distance, and lower bounds for the size following Bannai and Ito, we may say that association scheme
of a design with a given strength. The most specific results are theory is a “group theory without groups” [10]. Such a
obtained in the case where the underlying association scheme ,. . 7 . .
satisfies certain well-defined “polynomial properties;” this leads f:l|st|nct|on between regglarlty and symmetry F:an be found
one into the realm of orthogonal polynomial theory. In particular, N several subjects. An important example, which belongs to
some “universal bounds” are derived for codes and designs association scheme theory, is the distinction between distance-
in polynomial type association schemes. Throughout the paper, regular graphs and distance-transitive graphs [26].
the main concepts, methods, and results are illustrated by two The association scheme approach was introducesding
examples that are of major significance in classical coding theory, . . . L X
namely, the Hamming scheme and the Johnson scheme. Othertheory|r.1 1973 [37] to_deal wnh_aqollgcnon of topics involving
topics that receive special attention are spherical codes and the notion of the “distance distribution” of a code (see [35]
designs, and additive codes in translation schemes, including and [36]). One of the main subjects is the general concept of a
Z,-additive binary codes. 7-design or a code with “dual distance™- 1 and a universal
Index Terms—Association schemes, codes and designs, du{lower) bound on the size of-designs. (Term “universal”
ality, linear programming, orthogonal polynomials, polynomial means here that the bound is valid for alldesigns in all

schemes, translation schemes, universal bounds. association schemes under consideration.) This allows one to
explain the unified nature of different combinatorial objects
|. INTRODUCTION and bounds. If a covering radius of a codfein a metric

. . spaceX characterizes a degree of the approximatioraoy
ASSOCIATION_schem(_a theory is part of what is NOWjement of X by elements ofY, then the “dual distance”
called algebraic combinatorics [10], [54]. It has two maiR¢ y- characterizes an approximation degreeXofby Y “at
origins. Association schemewere introduced in statistical b whole.” This idea turned out to be very useful for some
(combinatorial) design theory by Bose and Shimamoto [23},npjems of numerical analysis [45] and cryptography [122]
and the appropriate algebraic setting was given by Bose was extended to any finite and compact infinite metric
Mesner [21]. In fact, the subject can be traced back t0 & PaRBces in [81]. Another important topic is the problem of
by Bose and Nair in 1939 [22]. _ finding a universal (upper) bound on the size of a code with
The second origin is group theory and, more precisely,inimum distance>d or, briefly, a d-code (see [82] and
character theory of finite groupsdeveloped by Frobenius,(ggy) short introductions to “association schemes and coding
Sc.hur, and Burnside. For example,. as .pomted out.by B%éory” were given by Sloane [155] and by Goethals [55].
nai and Ito [10], a paper by Hoheisel in 1939 derives thehe same subject is treated in detail in a recent paper by
orthogonality relations for group characters by a methqd,mion [32].
belonging to “association scheme theory” (before the appeargne of the most significant (although elementary) dis-

ance of association schemes in combinatorics) [61]. Anoth&leries was the fact that the MacWilliams transfbrof
pioneering contribution in this area is a paper by Kawadge gistance distribution o&ny code is nonnegative as the
on character algebras [67] (see [10]). In fact, one may evRRan value of nonnegative definite functions (matrices) over

the code [35], [37]. This “innocent appearing result” (to
quote Welch, McEliece, and Rumsey [131]) has far-reaching
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applied by Blichfeldt [19], Rankin [97], and Sidelnikov [110],onality relations (In the case of the Hamming scheme, we
[111]. However, for association schemes (and some of thbéavep;(k) = ¢;(k) = K;(k), whereK;(z) is the Krawtchouk
generalizations) there is a description of all such functiongolynomial of degree.) It appears that the-numbersp; (k)
This makes it possible to apply a linear programming meth@de the eigenvalues of the adjacency mafpix

for finding the best universal bound fdrcodes (and-designs ~ There is an importantormal duality in the theory, called
as well) [35], [37]. For a class of association schemes tfe Krein duality, which permutes the roles of the matrix and
important interest for coding theory, the corresponding linegointwise products in the Bose—Mesner algebra [8], [42], [95].
programs can be treated as extremum problems for systefimgs duality is a rich source of research ideas: “trying to make
of orthogonal polynomials. Thus any choice of a permissibtbe theory closed under duality.”

polynomial gives rise to a universal bound fdfcodes. In A codeY in an association scheme is a nonempty subset
1977, McEliece, Rodemich, Rumsey, and Welch (MRRW)f the point setX (with the inherited relationsk;|Y). The
[90] proposed a polynomial which gives an improvement afner distributiorf of Y is the (n + 1)-tuple (a;), where
the best asymptotic bound obtained before in [111]. One ydaft|a; counts the ordered pairs of code poigts/ € Y with
later, another polynomial was proposed [73]; it gives rise 1@, y’) € R;. In this general context, the “innocent appearing
a universal bound fod-codes that improves upon the MRRWresult” alluded to above is the fact thiiie ¢Q-transform of the
bound and is attained for many cases in different spadeser distribution is nonnegativén the sense that?_ a;qx (%)
although it gives the same asymptotic result. It turned oig a nonnegative real number (fér= 0,1,---,n). This is
[77], [112] that this polynomial is an optimal solution of thethe basis of thdinear programming methodo find upper
corresponding extremum problem in the class of polynomidi®unds forD-codes and lower bounds fdpP-designs in an

of a restricted degree. This progress in boundiigodes association scheme [37]. “Duality” betwedn-codes andD-
allowed one to improve bounds on ti&hannon reliability designs manifests itself in the fact that any linear programming
function[107] for some probabilistic channels (see [65]). bound for D-codes gives a linear programming bound for

In classical coding theory, dealing with codes illamming D-designs and conversely [80]. Explicit universal bounds for
scheme the MacWilliams transform involves a family of codes and designs in some classes of association schemes have
orthogonal polynomials [121] known as tK@awtchouk poly- been obtained by use of this approach [37], [73], [76], [77],
nomials[68]. Surprisingly enough, this fact was not uncoveref81].
before 1972 [35], although the “polynomial property” of the Certain parts of the theory can be developed further, when
MacWilliams transform was pointed out by MacWilliamsappropriate restrictive assumptions are imposed op-tloe ¢-
herself in 1963 [86]. The importance of the role played bgumbers. An association scheme is said to é@olynomial
Krawtchouk polynomials in coding theory is well recognizeéchemeif the p-numbers can be represented in the form
nowadays [78], [82], [88]. It can be explained by the fagti(k) = F;(&) whereP;(t) is a real polynomial of degreein
that these polynomials give theigenvalues of the distancet and&o, - -, &, are distinct real numbers. The orthogonality
relation matrices of the Hamming scheii®¥]. This was first relations on thep-numbers show thatP;(t))i_, is a system
proved implicitly by Vere-Jones in the binary case [128]. A&f orthogonal polynomialsThere is a similar (dual) definition
thorough investigation of the group-theoretic significance @hd a similar result for &-polynomial schemgnvolving the
the Krawtchouk polynomials was given by Dunkl [46]. g-numbers instead of thg-numbers) [37].

The familiar “block codes of lengtln over ag-ary al- The P-polynomial property has a clear interpretatiof;
phabet,” which belong to classical coding theory, can I®ntains the pairs of points that are at distarcapart in
called “codes in the Hamming (association) schefg.” the “generator graph{X, Ry). In other words,(X, 1) is a
The general association scheme approach provides us natur@ijance-regular graphThis subject was introduced by Biggs
with a considerable extension of the theory in that it applié8 1969 (see [18]); it is treated in great detail by Brouwer,
to “code$ and “design$ in any association schem7], Cohen, and Neumaier [26]. The dual notion apgolynomial
[39]. This combinatorial structure consists of a nonemp§cheme is equally interesting and has been investigated by
finite set X endowed with a collection of binary relationsseveral authors [10], [54], [71], [72], [77], [81], [93], [94],
Ro, Ry, -+, R, having strong regularity properties. The adjaf126]. It should be noted, however, that this notion does not
cency matrices of the grapli&, R;) generate a commutativehave a simple “combinatorial meaning.”
and associative algebra (over the complex numbers) both forThe theory of@-polynomial schemes can be extended so as
the matrix product and the pointwise product. This is calld@ include “continuous analogs” such as theclidean sphere
the Bose—Mesner algebraf the association scheme. It hagind theprojective spacen a unified framework [48], [54],
two distinguished bases: the basis consisting ofatiiacency [65], [77], [81], [93], [116], [119]. In particular, the linear
matricesD;, and the basis consisting of tiveeducible idem- Programming method can be applied to derive upper bounds
potent matricesEy. By definition, there exist well-defined for spherical codes with a given minimum distance and lower

complex numberg; (k) and ¢ () such that bounds for spherical designs with a given strength (see [45],
n n [77], [81], [116], and [135]).
Di:Zpi(k)Ek | X|Ex :qu(i)Di. If the point set X is endowed with the structure of
k=0 i=0 an Abelian group and if the relation®; are “translation-
The p-numbersp; (k) and theg-numbersg, (i) play a promi- 2A related notion is theouter distribution which enumerates theé;-

nent role in the theory. They satisfy some well-defioetthog- associates of each pointe X in the codeY.
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invariant” with respect to that group, then the associationb) For: € N,, the converse

scheme is said to be #anslation schemewith respect RY:={(z,y) € X% (y,z) € R;}
to the given group). This notion is equivalent to that of a
commutative Schur ring, investigated in detail by Tamaschke
[123]. There exists alual translation scheme (with respect

to the dual group ofX). If Y is an additive code inX,

i.e., a subgroup ofX, then there is a natural definition of : 4 e
an annihilator codeY™ in the dual scheme. (The relation (ZTQ)GRJ_IS equal to.the c.onst.amﬁj (for L’J’k_eN")'
betweenY and Y° generalizes the relation between a linear Cond|t|U0n b) induces "'Oa'“’.‘g ¢ — i% over Ny, deflned by
codeY in Hamming scheme and its orthogonal code-.) Ryo = Rp. The numberp, ;, is denqted byv; and is Ca_”?d
The inner distributions of the codés and Y° are related the valency(o_r the degr(_ae) of the directed 9“”?@*’ R it
by generalized MacWilliams identitiegn the sense that they counts the points € X with (z, z) € R, for any fixedx € X.

are the p-transform andQ-transform of each other (within Clle:1 r:r):éqs}iaco:divr: F_:ltrrl]OécE)ri;?Cv;: I|ii2£ions the definition above
scaling) [32], [37], [42]. g P ’

. . _ .__can be made more restrictive. The association scheme)
Thus the theory of translation schemes is quite |nterest|ngi|snSaid to besymmetricif all its relations i; are symmetric
that it provides the formal Krein duality with an actual dualityl_hus condition b) is replaced by ' '
interpretation. Furthermore, in this restricted context, there 'Sb)* R. = RY for eachi € N,
a Sif“p'e criterion to check whether a _given additive cade In oth:er worij’s a symmetric agsociation scheme Hhasial
carries a “subscheme” of the translation scheMgand to paifing, i.e.,i = i for all i. (Notice that the identity® . = p*
charac_tenze the dual schemef(see [37] in the case of thein ¢) can be omitted in the symmetric case, sinczéj it bééomes
Hamf“'”g schgme). - . a consequence of the other requirements.)

This paper aims at giving a self-contained account of thoseIn particular, a2-class association schenfe = 2) is
parts of association scheme theory that are especially relev@&ﬁivalent to astrongly regular graph[20], [105] in the

to coding theory (in a wide sense), along the lines of thg mmetric case, and to akew conference matriin the

of R;belongs toR.

c) There exist integer number‘sﬁj, called intersection
numberswith p ; =p* ., such that, for each pafr,y)
Ry, the number of pointg € X with (z,2) € R; and

present introduction. _ o o nonsymmetric case [13], [56].
Section Il contains the basic definitions; it is focused on Note that we can consider an association schéfieR)
the Bose-Mesner algebra and its formal duality. Section Il an ordering ofR;, i = 0,1,---,n, as a space¥ with

introduces the subject of codes (and designs) in an associafig functiondg: X2 — N,, which is defined as follows:
scheme, with special emphasis on the notions of the inner and

outer distributions. This also includes the linear programming

approach and a duality in bounding the sizes of codes apdthe symmetric case this function has, in particular, the
designs based on the existence of two orthogonality Conditiob‘ﬁepertiesaR(a:, y) = 0 if and only if z = y anddr(z,y) =
Section IV gives up-to-date bounds on fundamental parametegts,, =), but, in general, does not satisfy the triangle in-
of codes and designs iR- and/orQ)-polynomial schemes. Two equality and hence is not a distance function. On the other
extremum problems for systems of orthogonal polynomials afi@nd, a metric spacé& with a distance functiond(z,v)
considered and their optimal solutions are used to descripfich takes values fromV,, is a symmetria:.-class association
the best known linear programming bounds. The results fegheme X, R) with 9r(x,y) = d(x, %) if and only if for any
Q-polynomials schemes are extended to the case of the unit ¢ N, andz,y € X, the number

Euclidean sphere. FaP- and @-polynomial schemes, three . . .

pairs of universal bounds and main asymptotic results are Aig(@.y) =z € Xo 0z, 2) = 1,0(z.9) = j}| (2)
presented. Section V deals with translation schemes and thagpends only on, j, andd(z, y). In fact, we state that this is
additive codes; it includes an introduction h-additive true for the first two examples below.

binary codes.

Or(z,y) =¢if and only if (x,y) € R;. (1)

Example 1: Let X = F™ be thenth Cartesian power of
Il. BAsic NOTIONS a finite alphabetF, with |F| =q > 2. Let Oy: X% - N,
denote theHamming distance function

On(z,y):=|{j € N}: z; iH-
Let X be a finite set of “points,” with X| > 2. For an b_[( v)=l 7 _yJH _
integern > 1, consider a seR = {Ro,Ry,--+,R,} of n+1 Then (X, R) with 9r(x,y) = Iu(z,y) is a symmetricn-
nonemptybinary relationsR; on X (i.e., R; C X?), forming class association scheme, called tHeamming schemand

A. Definitions and Examples

a partition of the Cartesian squar&? of X. denoted byH,'. It appears as the natural framework of the
For integersa and b with « < b, we shall use the classical theory of “block codes” [82], [88]. Whenq is a
notation N2 for the integer intervafa,a +1,---,b} and put Prime power, F' can be endowed with the structure of the

N,:=N° = {0,1,---,n}. finite field F,. In this casedu(z,y) = wu(z — y), where

wg: X — N, is the Hamming weight functigngiven by
Definition 1: The pair (X, R) is said to be ann-class ., (z):=|{j € N': z; # 0}]. More generally, this applies
association schemd to the case wherd has the structure of aadditive Abelian
a) Ry is the diagonal, i.e.Ry = {(z,z) € X?: z € X}. group. (No multiplicative operation is required here.)
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Example 2: Let X be the set of binary-tuples of a fixed by M(z,y). The directed graplg.X, R;) is represented by its

weightn, with 1 < n < |v/2]. Thus adjacency matrixD; € C(X?), defined by
X :={z€{0,1}": wy(z) =n}. 4 4L for (z,y) € R;
{o € {0,1}": wi(x) = n} Die ) {07 e 3)
Fori € Ny, define Definition 2: Let (X, R) be ann-class association scheme
Ri:={(z,y) € X2: 9y(z,y) = 2} (see Definition 1). ThdBose—Mesner algebraf (X, R), de-

noted by .4, is the complex vector space generated by the

and adjacency matrice®;, that is,

RZI{Ro,Rl, . ,Rn}
) ' A:{60D0+61D1+"'+CnDnl Co,cl,"',anC}. (4)
Then(X, R) is a symmetria-class association scheme, called
the Johnson schemend denoted by. It is a “subscheme” of
the binary Hamming schem®; with Og(z,y) = 5 Ou(z,y).
The Johnson scheme plays a useful role |n combinatoria
coding theory. Do+Di+---+D,=J Dy=1. (5)

From the fact thaR is a partition ofX? and from condition
a), it follows thatA contains the all-one matri¥ and the unit
F\tI’IX 1, since

Example 3:Let F = {wg,a1,---,4-1}, and X :=F". Condition b) says that is closed under conjugationM
The compositionof a point z in X is the integerg-tuple M) and under transpositiofM ~ M7), whence under

(so(x),s1(x),---,84—1(x)) defined by conjugate transpositiofVf — M*:=11" ), since
si(z):=|{j € N} z; = ay}|- D;=D, D} = D;.. (6)

Assume thaiF is an Abelian group. Define a sét of binary Condition c) says thatl is closed under matrix multiplicatign
relationsR; on X as follows. A pair(z, ) in X2 belongs to and that multiplication in4 is commutative since

a certain relation®; if and only if the differencer — y has a L.
specified composition. ThefiX, R) is ann-class association DiD; = pf;Dyx = D;D;. (7
scheme, witm = (“¥7,*)—1, called thecomposition scheme k=0

It is symmetric wherx = —x for allz € X,i.e, whenF'isan This shows that then + 1)-dimensional vector spacel

elementary Abeliar2-group (of orderg = 2™). In particular, defined by (4) has the structure of @mmutative algebra

the composition scheme with = 2 reduces to the binary (overC). As indicated in Definition 2 (with some anticipation

Hamming schemdi?. in the use of the term “algebra”4 is usually referred to
There are several other families of association schemes thatthe Bose—Mesner algebrgor adjacency algebraof the

have interesting applications in coding theory. Let us menti@sociation schemeX, R) (see [21]).

five of them: i) the association scheme relative to fmdit For a symmetric association scheme, we have = D;

weight enumeratof42], [88]; ii) the Lee schem§l24]; iii) the  for all <. In this case, we can define the Bose—Mesner algebra

nonbinary Johnson scherfld, [124], [125]; iv) the association over thereals, i.e., replaceC by R in (4).

scheme ofn x n matrices over a finite fielfd1] (which has The adjacency algebrd is known to besemi-simple This

applications in crisscross error correcting codes [52], [102}neans that there exists a unitary mattixof order | X| that

v) the association scheme 0fx n skew-symmetric matricesreduces each matrid/ € A to a diagonal formA,; =

over a finite field43]. In the last two cases, the relatiofs U—!AU. As a consequence4 possesses a unique basis of

are defined from theank metricover the matrix sefX. irreducible idempotent matrice&y, E1, - --, F,,, which are
Of course, there exist applications of association schemagtually orthogonal

outside the area of coding theory (in a wide sense). It is

especially worth saying that association schemes have recently By by = by B for k, 1€ Np. (8)

found considerable interest spin model theorya branch of |n particular, £, = |X|~*J. The rank of E;, will be denoted

mechanical statistics). The idea is due to Jaeger (see [63] @?dmk, and the numbersng,m,,---,m, will be referred

the references therein). to as themultiplicities of the association scheme, R). By

Finally, let us mention some constructions that produGgfinition, E;, has eigenvalues and0 with multiplicities m;,
association schemes from other association schemes. In pgid |X| — my. Notice thatmo = 1 and Sp_,my = |X]|.

ticular, there is the notion of thextensior{37], product[54], Considering the inner product
and merging[32] of association schemes.
(v, w) |X| Z (9)

B. The Bose—Mesner Algebra z€X

It proves very useful to investigate a combinatorial structuf@f complex functionsv, w defined onX, one can represent
such as an association schefii& R) by matrix algebra meth- the matrix £, in the form
ods. LetC (X?) denote the set of square complex matrices i
M of order |X|, where rows and columns are labeled with Ex(z,y) |X| va @Yok, (y) (10)
the pointsz € X, and the(z,y) entry of A/ is denoted
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where{vy ;: j =1,---,my} is an arbitrary orthonormal basis Example 1 (continued)for given values of n (the
of the linear spacé’, generated by the columns &f;.. (Itis “length”) and ¢ (the “alphabet size”), and fok € N,,, we

orthonormal with respect to (9).) define theKrawtchouk polynomiak}?(z) as follows [68]:
Definition 3: The p-numbers of an n-class association k

scheme(X, R) are the complex numbers (%), with %, € K} (z):= Z I(g—1)k <7> <Z Z) (16)

N,, defined from the expansion of the adjacency matrices j=0 !

D; in the basis of the irreducible idempotent matrides of ) ) _

the algebraA, i.e., Clearly, K(z) is a polynomial of degreé: in z. The p-

numbers and the-numbers ofH;' are the values assumed by
- . the Krawtchouk polynomials at the integer pointd, -
Di=> pi(k)E, forie N,. (11 More precisely

Analogously, theg-numbersof (X, R) are the complex num- pik) = K['(k)  q(i) = K;(4). 17)

bers with i, k € N,,, defined from the inverse expansion . S n !
Wlthlglkih)e norrrtlallzmg factolX], i.e., P The valencies and multiplicities arg = m;, = () (¢— 1),
N Example 2 (continued)For given values of v (the
| X|Ex = qu(i)D fork e N.. (12) “length”) andn (the “weight”), the valencies and multiplicities
g ° " of the Johnson schemé&’ are given by

These numbers play a major role in the theory. It follows — _ <n> <v - n) oy — <v> B < v )
from (11) that thep-numberp;(k) is the eigenvalueof D; ’ () () k k—1)"

relative to themj-dimensional spacd/ spanned by the
columns of Ey. In particular, p;(0) = v; (valency of R;). Fork,i € N,, we define thedahn polynomial Hy(z) and the

Notice thatg,(0) = m, (rank of Ey). In view to (3) and (1), dual Hahn polynomiald;(z) as follows [66]:

(12) can be written in the form <k> <v f1— k)
k .
| X|En(z, ) = au(Or(, ). 13 Hy(z) =i Y (— J <7> (18)
prd v—n J
If the association scheméX, R) is symmetri¢ then its ! j j

p-numbers and;-numbers araeal. ; . .

Let F'(N,,) denote the linear space of complex (or real in 7, () = Z(_l)i—j <” - J) <” h Z) <U - Z).
the symmetric case) functions defined . In particular, the =0 t—J J J
p-numbersp; (k) and theg-numbersy; (<) are values of the- (19)
functionsp; € F(N,) and ¢-functionsg, € F(N,) which
form two bases off'(/V,). This implies that any function Clearly, Hy(z) is a polynomial of degreé in z. It is easily
h € F(N,) has a unique expansion over either of these basgsen thatH;(z) is a polynomial of degree¢ in z(v + 1 — z).

" The p-numbers and thg-numbers ofJ can be determined

b= Z hi (p)pi h= Z Q) an. (14) (see [37]) from these polynomials by

1=0 k= e . .
¢ pi(k) = Hi(k)  qu(d) = Hu(9). (20)
The following result expresses the well-knowrthogonal-
ity relationsfor the p-functions and;-functions. It appears asC. Formal Duality

a consequence of (8), basically. The adjacency matrice®); and the idempotent matrices

Theorem 1: The p-functionsp; € F(N,,) (¢ =0,1,---,n) Ej play dual rolesin the theory. This formal duality, which
are pairwise-orthogonal ofv,, with respect to the multiplic- interchanges thg-numbers and thg-numbers, will be referred
ities my, and theg-functionsg, € F(N,) (k = 0,1,---,n) to as theKrein duality[8]. Let us examine this subject in some
are pairwise-orthogonal oWV, with respect to the valenciesdetail. The Bose—Mesner algehrhis closed not only under

v;. More precisely ordinary matrix multiplication( M, N) — M N, but also under
pointwise (or Hadamard multiplication (M, N) — M o N,
Z mpi (k = | X|vi6; defined by(MoN)(z,y) := M(z,y)N(z,y). This stems from

the fact that the adjacency matrices are “idempotent” and
“mutually orthogonal” with respect to the pointwise product

vigr () qu () = | X | b -
; ( ) ( ) | | D; OD]' = (57j7jD7j, for L,J e N,. (21)

In view of the fact that the relations (11) and (12) are inverse The formal Krein duality under discussiopermutes the
of each other, the-numbers and thg-numbers are related byroles of the matrix product and the pointwise produthus

mep; (k) = viqr(t). (15) 3In fact, these are the Hahn polynomialssgherical type
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the identities (8) and (21) are dual of each other. As duals Bf The Group Case and Generalizations

(5) and (6), we have In Examples 1-3 of Section II-A, theegularity properties
Eo+Ei+ - +E, =1 Eo=|X|71J defining the association scheme structure are induced by some
symmetry propertigsi.e., by a certain “group of automor-
phisms.” We now say a few words on this subject (see [10],
[58], and [132]). Let@ be a transitive permutation group
acting on the point sek. It induces a partition ofX? into
a well-defined selR = {Ry, Ry, -, R, } of orbits R;. (By

niti [j 28 1 1 g 9 2
Let us stress the fact that the idempotent matriEgsare €finition, such an orbift; contains the images:7, /) € X

. o 5 .
Hermitian and nonnegative definitesince their eigenvalues of a flxed.pa|r(xz,yz) € X undler_ all mappingy € G-
are0 and 1. (It can be viewed as a dual of the property of Ne resulting structuré X, R) satisfies conditions a)— c) of
adjacency matrices, having entriesand 1.) an association scheme, except possibly the “commutativity
7 . . ” k o k . .

The following property is essential for the linear programcondition” pi; = pj;. In any case, the adjacency matrices

ming method introduced in Section Il below. D; form the basis of a subalgebra 6f( X?2). (It is called the
Hecke algebrg This algebra is commutative if and only if

dnfj = pk, (for all 4,5, k).

Ef =E, El=E-

where k +— k™ is a well-defined pairing overv,,. For a
symmetric association scheme, this pairing is trivig{: = Ej,
for all k.

Theorem 2:For any functionh € F(N,) the matrix
h(dr(x,y)) is Hermitian and nonnegative definite if an

only if hi(q) = 0.k = 0,1, ,n. Example 1 (continued)Let &G be the permutation group on
Next, we examine the dual of identity (7), that is, X :=F" generated by two types of mappings:
i) a permutation on the, coordinates;
. ~ ii) in each coordinate position, a permutation on the
[ XI(Er 0 Br) = g;oq’“’lEm' (22) alphabet symbols.

This group has order!(g")", and it is transitive onX. The
The numbers;; defined from (22) are usually called theein  corresponding structurgX, R) is the Hamming schemé&l”".
parametersthey are the duals of the intersection numhgts  In particular, the binary Hamming scheri&' arises from the
In particular,qﬁjk.. =my andq,(j’l =0 whenl # k7. Thus the (complete)monomial groupG = M,, of degreen, containing
multiplicities m;, are the duals of the valencies Notice that the matrices of orden that have one nonzero element, equal
Ej, o £y is a Hermitian nonnegative definite matrix accordings 41, in each row and each column.

to (10). Hence, by (13) and Theorem 2 the Krein parameters . )
satisfy ¢, > 0 (see [55] and [101]). Example 2 (continued)Let G be thesymmetric groups,,

By use of (7) and (22) we deduce that the intersection nufil d€greev, containing thev! permutations orv coordinates.
bersp; ; and the Krein parameterg, , are thelinearization It acts in a natural way on the seéf of binary v-tuples of
factors relative to thep-numbersp; (k) and to theg-numbers Weightn. The corresponding structufeX, i) is the Johnson

qx(4), respectively, in the sense that scheme.J;.
" The notion of an association scherfi€, ) can be gener-
pi(k)p; (k) = pr (k) (23) alized, by omitting the commutativity requiremerft; = p¥ ;.
—0 7 A further extension is obtained by relaxing the “homogeneity

n condition” a) in Definition 1. In general, it is only required
@ (Da(®) = D aiigm (D). (24) that the diagonal relatiof(z,z): = € X} be aunion of
m=0 some relations belonging to the sBt Thus we arrive at a

combinatorial structuréX, R) called acoherent configuration
[59] (equivalent to acellular ring [50]). The group theoretic
counterpart of this general structure is obtained by leaving out
the transitivity assumption.
Pi(i) = qi(i) d.(k) = pi(k). (25) Certain infinite mgtric spaces occur as analog_s of as_soci.ation
schemes that are important in coding theoretic applications.
A necessary condition for an association scheme to havéMg call distance-transitiveor two-point homogeneous [130])
formal dual is that its Krein parameters be integers (since th@yonnected compact metric spacavith the distance function
are the intersection numbers of the dual). d(-,-) and the isometry groufy, if for any x1, zo, 1,42 € X
the equalityd(z1,y1) = 9(x2,y2) implies the existence of
someg € G such thatzs = 2y and y» = %/. As an
example of a distance-transitive space we mention the unit
Buclidean spheres™~! in R™ (considered in more detail in
Section IV-E) whose isometry group consists of all orthogonal
Example 2 (continued)The Johnson schemd? has no matrices of order.. A distance-transitive spac& has many
formal dual. However, the general Krein duality applies; strong properties [9], [53], [65], [120], [129]. The isometry
permutes the Hahn and dual Hahn polynomials. group G of X actstransitivelyon X and hence there exists

Two n-class association schemgs, R) and(X’, R'), with
|X| = |X’|, areformal dualof each other if thes-numbers of
(X, R) are theg-numbers of( X', R’), and conversely, i.e.,

Example 1 (continued)in view of (17), the Hamming
schemeH,’ is formally self-dual. In fact, it is actually self-
dual in the strong sense of “duality in translation scheme
(see Section V below).
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a uniguenormalized invariant measurg (u(X) = 1 and

u(A9) = p(A) for any measurablet C X andg € G). If

nx is the diameterof X, then for any (real),j € [0,nx]

andz,y € X,p{z € X: 8(x,2) < 4,9(z,y) < j} (cf. (2)

depends only on, j, and d(x, y). For anyinvariant function

H(x,y) on X? (this means that (+9,4?) = H(x,y) for

any g € G) there exists a functioh on [0,nx] such that
H(z,y) = h(8(z,y)). Continuous invariant function® (z, y)

on X? form a commutative algebrad with respect to the
operations of addition andonvolution

F*H@J):/

X

F(x,y)H(y, ) dp(y)-

In the linear spac& of continuous functions(z) on X with
the inner product

(ww) = [

(cf. (9)), the unitary representatioh(g) of G defined as

v(@)yw(x) dp(z) (26)

follows: L(g)v(z) = v(x¢ '), decomposes into a countable
direct sum of pairwise inequivalent irreducible representatio

L;(g) acting on (mutually orthogonal) subspacks, & =
0,1,---, of continuous functions. Each subspakg has a
finite dimensionm,, (V, consists of constants and, = 1)
and isinvariant (i.e., if v(z) € V4, thenv(z?) € V, for any
g € G). The invariant functions (cf. (10))

my

Ey (z,y) = Z Ui (@) vn,; (),

k=0,1,--- (27)

where {v ;(x): j = 1,---,my} is an arbitrary orthonormal

(with respect to (26)) basis df;, form a basis ofd consisting

of irreducible idempotents, which are mutually orthogonal
Ek*Elz(Sk,lEk, k,l=0,1,---.

The corresponding ¢*functions” ¢, on [0,nx] such that

Ei(z,y) = qu(d(z,y)) are real and satisfy the following

orthogonality and normalization conditions:
/ @ ()@ (z)dii(z) = my b1, a(0) =mi  (28)
0
where i is the measure of0, nx] such thatii(4) = u{y €

X: 9(xo,y) € A} (this does not depend ary € X). For any
elementH (x,y) = h(d(x,y)) of A, the series

Z higr(2)
k=0

with

o= ) [ o) i)

2483

Note that the definition and all properties of distance-
transitive spaces are also correct for finite metric spaces, and
any finite distance-transitive metric spacé is an n-class
symmetric association scherf, R) with 0r(z,y) = d(z,y)
and n equal to the number of nonzero values @fz, ).

In particular, the Hamming and Jonhson spaces are distance-
transitive. The fact that in the case of finite spagkéz, y) =

| X|Ex(x,y) (compare (10) with (27)) is explained by the
distinctness between the product and convolution of matrices.

In coding theory and related subjects, an association scheme
(such as the Hamming scheme) should mainly be viewed as
a “structured space” in which the objects of interest (such as
codes, or designs) are living.

Let Y be a nonempty subset of the point sEt of an
association scheméX, R). ThenY will be called acode
in (X,R). (In certain contexts,Y is preferably called a
design) We now introduce the important concept of the inner

CODES AND DESIGNS

Hgstribution of a code.

A. Inner Distribution

Definition 4: The inner distributionof a codeY in an n-
class association scheni&’, R) is the rational(n + 1)-tuple

(ag,a1,---,a,) where|Y|a; counts the pairs of points i/
that belong to the relatio®;. Formally
1
%:%szﬁﬂWmRm fori e N,. (29)

A code Y in the Hamming scheméi; is nothing but a
g-ary code of lengthn. The inner distribution ofY is its
(Hamming distance distributionIn effect, |Y'|a; counts the
pairs of codewordg,y’ € Y with 9y (y,y') = .

Coding theorists are often interested in a code having a
specified set of admissible distances (in particular: a specified
minimum distance). In the general framework of association
schemes, this notion extends as follows.

Definition 5: Let D be a subset aV!. A codeY in (X, R)
is called aD-codeif all pairs of distinct points inY” belong
to the admissible relation;-p R;. In terms of the inner
distribution, this becomes;(Y") = 0 for eachi € N}\D.

Consider, for a while, the familiar situation whe¥e is a
linear code of lengthn over the fieldF, (in the Hamming
scheme). Then the distance distribution Yofreduces to its
weight distribution:«,;(Y") counts the codewordg € ¥ with
wg(y) = 4. From the linear codeY’ we can define its
orthogonal codgoften called the dual code), that is,

Yt={z¢ Fy: syl =0forally e Y}.

converges tch(z) on [0,nx]. Moreover, for these functions The weight distributions oft” and Y+ are related by the

g,k = 0,1,---, an analog of Theorem 2 is valid andMacWilliams identitie$86], [87]. These are well-defined linear
the linearization factors;;’, are nonnegative. All (infinite) relations involving the Krawtchouk polynomials (16). (We
compact distance transitive spaces have been classifiedshall go back to this subject in Section V.)

[130] as the unit Euclidean spherg8~!, the projective spaces As a result, the “Krawtchouk—MacWilliams transform” of

in n dimensions oveR, C, and quaternionsl (n = 2,3, -- ),
and the Cayley projective plane.

the distance (or weight) distribution of a linear codé
yields nonnegative real numbersvhich can be interpreted as

Authorized licensed use limited to: Herzeliya IDC. Downloaded on January 20,2024 at 06:49:20 UTC from IEEE Xplore. Restrictions apply.



2484 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

the componentsy, (Y1) of the distance distribution of the Example 2 (continued)in J?, an N t!l-designY is a
orthogonal cod& L. It turns out that this nonnegativity resultcombinatorial 7-design (see [37]). This is a collection of
can be extended tarbitrary codes(in a Hamming scheme), blocks of sizen, out of a point set of size;, such that all
even though the orthogonal code notion is lost. Moreover, assubsets of thes-set are contained in the same number of
shown below, the result extends to codesaity association blocks [15], [62]. There is a close connection between coding
scheme. theory and design theory [3], [5]. It is interesting to point
out that a three-parameter class of Hahn polynomials (larger
than the “spherical class” involved in thenumbers) plays a
significant role in the theory of combinatorialdesigns [133],
[134] and in an extension thereof [28].

Definition 6: Let ¢ (¢) denote the;-numbers of am-class
association scheme (withk € N,). The Q-transformof a
complex(n + 1)-tuple (a;)_, is the complex(n + 1)-tuple
(af)—o given by

B. The Linear Programming Method

ay = Zaiqk(i), for k € N,. (30) Theorem 3 strongly suggests using linear programming
=0 to find bounds on the size of a codé characterized by

some linear constraints on its inner distributian(Y"));,. In

particular, this method leads to upper boundsfacodes and

to lower bounds foD-designs. We shall use the “nonstandard

forms” of the linear programming problem. For simplicity

we assume, in this subsection, th@t, R) is a symmetric

| X |a; = Z alpi (k). (31) association scheme, which implies that fireand g-numbers
arereal. For the problems that we are considering here, this
entails no loss of generality. While simultaneously considering

Note that this definition of th€)-transform in fact depends
on the choice of an ordering of the functiops(or the matrices
Ey), k=0,1,---,n. From Theorem 1 and (15) it follows that

Moreover (see (14)), for ang € F(N,,) p-functions and;-functions it is convenient to use the letter
instead of eithep or ¢, and usex for the other one. For any
Z a;h Z ahha(q 32) h € F(N,) with the expansiork = 37 _ hi(u)u, we put
Q. (1) = h(0)/ho(u) if ho(u) # 0.
Z“kh =|X] Z“zhz (33) For anyD C N}, we say that: € F(N,) has the property
pars A, (D) if
; 1
Theorem 3 (Generalized MacWilliams Inequalities [37]): ho(u) >0 hi(u) 2 0, fors e N,

Let (a;(Y))r, be the inner distribution of a codé in (X, R), R(0)>0  h(i) < forie D
and let(a;,(Y))5_, be itsQ-transform. Then;,(Y') > 0 (i.e.,
a,(Y) € Ry) for eachk € N,,.

The proof is quite easy since, in view of (13) and (10), ho(u)>0  hi(u force D
R(0)>0  h(i)>0 fori € N}.

and has the propert3.,(D) if
) <

my 2

Y = 3 qulr@y) =

z,yCY j=1

Z g (z Let

zCY

A (X, D) =minQ,(h)
(34) . . :
where the minimum is taken over all functionse F(N,)
This also shows that/,(Y) is an averaging parameter of With the property2L,,(D) and
a codeY. In this connection note that)(X) = 0 for all B,(X, D) = max Q,(h)
k=1,
TheQ transform of the inner distribution of a codéwill Where the maximum is taken over all functiohsc F'(Ny.)

sometimes be referred to as the “dual (inner) distributior¥of With the property B, (D). It should be noted that both
extremum problems are linear programming problems, because

Definition 7: Let D be a subset al;;. A codeY in (X, R)  yjthout loss of generality one can assume that:) = 1 and
is called aD-designif the Q-transform of its inner distribution tpen

satisfiesa),(Y) = 0 for eachk € N}\D.

Example 1 (continued)in H;, an N;t'-designY is an Qu(h) = n0) = Z hj(u)u; (0)
orthogonal array of strength (see [37] and [40]). This means J=0
that the restriction o™ to any set ofr coordinates shows all The following two results are obtained, respectively, with
T-tuples of alphabet symbols appearing the same numbertioé help of (32) and (33) with; =a;(}") anda}=a.(Y"). One
times [98]. Orthogonal arrays are closely related to “resilieaiso makes use ofo(Y) = 1,a((Y) = X a;(Y) = |Y],
functions” and to “correlation-immune functions” which occur; (Y) > 0,a,(Y) > 0 (by Theorem 3),a;(Y) = 0 if
in some cryptography applications [16], [33], [79], [113]; € N}\D whenY is a D-code, andzi(Y) = 0 if i € N}\D
[122]. whenY is a D-design.
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Theorem 4 [37]: If Y is aD-code and: € F(N,,) has the  Theorem 6 [80]: For any symmetric association scherke
property 2, (D), then and anyD C N}

|Y| < Aq(Xv D) < Qq(h)- (35) Aq(XvD)Bp(Xv D) = Bq(Xv D)Ap(XvD) = |X|

If Y is a D-design anch € F'(N,,) has the propertyB,(D), . Outer Distribution and Fundamental Parameters of Codes

then
The inner distribution of a cod® is concerned with the

[Y| > B,(X,D) = Q4(h). (36) mutual relations or “distances” between the code points which
) ) ) are values of the functiofiz(x, v). We shall omit the quotes
In each case, equality’| = 2,(h) holds if and only if when, for a symmetric association sche(@é, R), dr(z,y)
a;(Y)h(i) = d(Y)hi(q) = 0, ie N satisfies the triangle inequality and hence is a distance function.
Let D(Y) denote the set of distinct values of the function
Theorem 5 [37]: If Y is a D-code andh € F(N,) has 0g(zx,y) whenz,y € Y,z # y. Note that

the propertys,(D), then DY) = {i € N}: a;(Y) # 0}

<|X ( <|X .
Y| < |XI/By(X, D) < |X|/Qu(h) BT . define
If Y is a D-design andh € F(N,,) has the propertRl,(D), D'(Y):={i € N} ai(Y) # 0}
then o n o
For simplicity, we shall consider code®¥ in an n-class
Y] 2 [X]/4,(X, D) 2 [X[/€ (). (38)  association schemgX, R), such thatl < |Y| < |X|. Then

In each case, equality’| = |X|/,(h) holds if and only if ~We can state that botR(Y") and D’(Y") are not empty. Define
. the following fundamental parameters of a cadg36]:
p . .
a;(Y)hi(p) = ai(Y)h(i) =0, i€ N,. « the minimunt‘distancé d(Y):= min D(Y);

The necessary and sufficient conditions for these bounds to the (minimur) dual “distancé d'(Y') := min D'(Y);
the degrees(Y'):=|D(Y)|;

be sharp have many useful consequences, a nice example being , ,
the (generalizedl.loyd conditionfor perfect codes [17], [37], *“the dual degrees'(Y) .= [D'(Y)].
[70], [84], [101], [117]. Note that Theorems 4 and 5 imply thafogether withd’(Y") we will also consider
the functionsh for which |Y| = Q,(h) or |Y| = |X|/Q,(h) * the (maximun strengthr(Y) :=d'(Y) — 1.
holds areoptimal solutions of the corresponding extremunMoreover, we consider two auxiliary parameters
problems. if ne DY)

Coding theorists are especially interested in applying The- YY) = { 0’ otherwise
orems 4 and 5 to the class of codes withpecified minimum ’ '
distanced, which areNg-codes inH;" andJ. It was shown
in [35] that the classical “elementary bounds” such as the ¥ (Y) :{
Hamming Plotkin, and Singleton bounds occur as simple
cases of these theorems. In the next section we give boundfor given integers! and+ (with 1 < d < n and0 < 7 <
which are obtained with the help optimal solutions of some » —1), a codeY is called ad-codeif d(Y) > d and ar-design
extremum problems for systems of orthogonal polynomiait+(Y) > 7. These notions are special cases dP-&ode and
Combinatorial proofs of some of these bounds are unknowa.D-design, respectively, fob = N¢ and D = N7+t The
It should be noted that the bounds of Theorems 4 and 5 aamamples of--designs in the Hamming and Johnson schemes
be improved by the same linear programming method if orge examined in Section IlI-A above. The given definitions
knows an additional information about(Y") anda(Y),é € clearly show the dual character of the notionsiefodes and
N, (not only their nonnegativity). It was successfully used ifd — 1)-designs. LetA(X, d) denote the maximum size of a
the analysis of concrete codes (see [14], [27], and [88]). d-code in (X, R) and let B(X,d) denote the minimum size

In conclusion of this subsection we verify that there exists@f a (d — 1)-design in(X, R). A d-codeY in (X, R) is called
duality in bounding the sizes dP-codes and)-designs [78], maximalif |Y| = A(X,d) and a(d — 1)-designY” in (X, R)
[80]. For anyh € F(N,) andw (which is again eithep or is calledminimalif |Y| = B(X,d).

and
1, if ne D'(Y)
otherwise.

q), we define ani-dual functionk(® to h as follows: Now we introduce a definition that involves the relations
n (“distances”) between the codg and the whole ambient
R = | x|~/ Z (i) (39) setX.
1=0

Definition 8: The outer distributionof a codeY in an n-
Using Theorem 1 and (15) one can show thét)(i) = class association scheni&’, R) is the|X| x (n + 1) matrix
|X|*/2h; (@) and henceh = (R)® Qu(h)Q,(AW) = |X|, M whose(z,i) entry M;(x) equals

and i has the propert®lz(D) or B(D) if and only if A ‘ _ ) ‘

has, respectively, the proper®,, (D) or 2,,(D). In particular, a;{x,Y):={y € Y: (z,y) € R;}|.

this implies the equivalence of the bounds (35) and (37) andSome fundamental properties of a codeare defined in
also (36) and (38). terms of the rowsM (z) = (ao(x,Y), -+, an(z,Y)) of its
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outer distributiond/. A codeY is calleddistance-invarianif IV. POLYNOMIAL SCHEMES
M(z) = M(y) for any z,y € Y and completely distance-

regular if M(aj) = M(y) for any z,4 € X such that A, Orthogonal Polynomials

Or(x,Y) = Or(y,Y) where In the examples of the Hamming and Johnson schemes (and

) in several other interesting cases), theumbers; (k) and the
Ir(z,Y) = min {Og(z, 2): z € Y} g-numbersy, (i) are representable by polynomials of degiee
and k, respectively, in an “appropriate variable” (see Section
WhenY is alinear code ovei-, (in the Hamming scheme), II-B). This leads us to investigate the class of association
the rows M (z) of the outer distribution}/ are the weight schemes that enjoy either of these “polynomial properties”
distributions of the coset codés + z. (or both of them).
It is easily seen thatM M can be expressed linearly N )
in terms of the inner distribution of”. Let us give the Definition 9:
“@-transform version” of this expression. Consider the
transform of each row (x) of the outer distributiom\/. This

i) A symmetric n-class association scheme ig-
polynomial with respect to a functiorop € F(N,), if

. : - Ay there exist real polynomialg;(¢) of degreei,i = 0,1,---,n,

produces the matri®/ @, with @ := (qx(¥))i kc N, - such thatp;(k) = Pi(op(k)) fE)r) anyk € N,.
Theorem 7 [37]: The Q-transformM @ of the outer distri- ii) A symmetric n-class association scheme i€§-
bution is related to th&)-transform(aj,(Y))5_, of the inner polynomial with respect to a functiomq € F(N,,), if there
distribution by exist real polynomials,(¢t) of degreek,k = 0,1,---,n,

such thatgx(?) = Qr(og(4)) for anyi € N,,.
Q"M MQ = |X||Y| diag (ah(Y), d(Y), -+, ay ().

1N

It can be proved that these functiong and o must be
_ _ _ linear functions of the firstp- and ¢-functions p; and ¢
As an immediate consequence, ttamk of M is equal to (respectively), which take different valugs(j) and ¢:(5)

s'(Y) + 1. Furthermore, we obtain for different j € N, such that|p;(5)| < pi(0) = v and
lg1 ()] < ¢ (0) = my. We will use the following functions
> lag(@, Y)I? = | XY ]ap(Y) op and og:
- op(d)=1- 2p71(d) — U
whencea)(z,Y) = 0 for any k € N}\D'(Y'). This can also pi(n) =1
be deduced from (34) as follows: if € N}\D'(Y), then oo(d) =1 — 27‘71(6[) - (41)
q1(n) —m
(2, Y) =3 ailz, Y)au(@) = > a(@r(z,v)) Then op(0) = 1,0p(n) = —1 and 0g(0) = 1,06(n) = 1.

— When the functionp; or ¢; is decreasing onv,, we will

i= yCY . . . .

e extend it to a continuous decreasing functionj@m] (usually

- ka,j(a:) ka,j(y) —0. (40) the latter is dgfmed by_ the same formula_). In this case,
= the corresponding function given by (41) is a decreasing

continuous mapping froni0, n] onto [—1,1] and it is called

Some interesting problems in classical coding theory aféndard _
concerned with theovering radiusp(Y) of a codeY” (in the It follows directly from Theorem 1 and (15) that =

Hamming scheme) (see [6], [31], [34], and [64]). By definition{£i(t): ¢ € Nn} and Q = {Qx(#): k € N,} are systems
of orthogonal polynomialswith the following orthogonality

yey

p(Y) = max {9y (z,Y): z € X} conditions:
where > Pilap(R)P(op(k)mu = vil X|6:, (42)
k=0
u(x,Y):= min{0y(z,y): y € Y} Z Qo) Qi(og(d))v; =my| X |6k, (43)
=0

(Thus for a linear code(Y') is the maximum weight of cosetand the properties:

leaders.) This definition is extended to any association scheme

(X, R) if one replacesdy (x,u) by dr(x,v). The covering mpFi(op(k)) = viQir(og(@),  ikeN..  (44)
radiusp(Y") can be found from the outer distributidd of Y,
sincedr(x,Y) is the smallest € N, such thata;(z,Y) #
0. Notice that p(Y) generally cannot be determined fro

These orthogonal systend3 and @ are uniquely determined
nPy three-term recurrence relation#9] of the form

the inner (distance) distribut_ion df; however, some upper pjle;H(t) =(P(t) — p§,1)Pf,(t) _ p2313_1(t)
bounds onp(Y’) can be obtained from these data [37], [51], ./, N Bl
[118], [127]. (See also Sections IV-C and IV-D below.) Gy Qu41(8) =(Qu1() — qr1)Ok(E) — g7 Qr—-1(?)
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where determined from onlyfive independent numbers [72]. The
Pyt =1 2P(t) = v + T+ H(vy — same author [71] has shown that the polynomigj§t) and
ol?) 1(f) = v+ pa(n) 1 = pu(n)) Qr(t) relative to P- and @Q-polynomial schemes belong to
Qo(t) =1 2Qu(t) =ma + qu(n) + t{my — qu(n)). a well-defined five-parameter class of orthogonal polynomi-

Definition 9 depends on the ordering of the relatidsand als of the generalized hypergeometric type [114], known
of the idempotents;,, respectively. For this reason, a giverdS the Askey—Wilson polynomialf?]. His result produces
association scheme may possess more tharfspelynomial ~ closed-form expressions for tipenumbers and thg-numbers.
structure and more than 0®p0|ynomia| structure (See []_O]) Furthermore, it characterizes the Askey—WiIson polynomials

The algebraic notion of @-polynomial scheme is equiv- @s those orthogonal polynomials having “duals.”
alent [37] to the combinatorial notion of a distance-regular For a codel” in a Q-polynomial scheme, a polynomiglis
graph, defined as follows. LéfX, R ) be a simple connected called anannihilator for Y if f(cq(i)) = 0 for all i € D(Y").
finite graph of diametem. For i € N, define R; as the An annihilator f of minimal degree (i.e., degreg(Y)) is
set of pairs(z,y) € X2 such thatr andy are at distancé calledminimaland denoted by if f(o(0)) = f(1) = 1.
apart in(X, Ry), and letR:={Ry, Ry,---, R, }. If (X, R)is For a codeY in a P-polynomial scheme, a polynomiai
an association scheme, théX, R,) is said to bedistance- is called adual annihilator for Y if f(op(i)) = 0 for all
regular [26]. Thus if (X, R) is a P-polynomial scheme, then¢ € D'(Y). A dual annihilator f of minimal degree (i.e.,
dr (see (1)) is a distance function. Note that a symmetritegrees’(Y)) is called dual minimaland denoted byf*-"
association schemgX, R) with a distance functioy need if f(op(0)) = f(1) = 1. In particular, if ford € N, and
not beP-polynomial. (An example is provided by the “ordered/ = P or U = Q
Hamming scheme” [89].) On the other hand, the algebraic _ ;

. K . . . dU _ t—oy (J)
notion of a@-polynomial scheme has no simple combinatorial gt (t) = H 1—o(h) (45)
interpretation, except in some important special cases where j=d = 7u(J)

(X, R) can be embedded in a certain “lattice-type structure’ XQ_ 0Q XP_ 0P
[38], [39], [94]. Nevertheless, there exist some useful gene%fdm;nyi _Eg D (?::ozie by_%ﬂ%U' Tr? r an;; none_mlpt)?dgN "

L . g e polynomial of degree
f:haracterlzanons 0@_—po_lynom|al schemes [54], [126]. Th_ere|D| — 1 uniquely defined by the conditiong?- (o¢/(j)) —
lir%ns e;?r?he:tﬁ]rt)(;r(;r;tcet:;onn ;ﬁ;}tgf; -SpO:]y;rsmli?—llpropgrgnldn 6;,; for any j € D. Any function on D can be represented

4 ‘ _ : ,qby:'l # e by the interpolation polynomial ¥ h(i)g?“" of degree
pii =0 for k>i 4+ 1. This char.actenzes .the' d|stanC(1D| 1. In particular, for anyk € F(N,) we have
structure” in a clear manner. Similarly, a criterion for th .

-polynomial property is/*** # 0 andqt , = 0for¢ > k+1. . N N AU .
(-polynomial propery I8, # 0 andds,. y hi) = 3 g™ (o))

Example 1 (continued)For the Hamming schemed?, i=0

(17) holds and In the case of d/-polynomial association schem&, R)
pi(d) = qui(d) = n(q — 1) — dg. (where U7 _is either P or (), we can rephrage the linear
programming bounds of Theorems 4 and 5 in terms of ex-
Hence, Hy is P- and Q-polynomial with respect to the tremum problems for the systebhof orthogonal polynomials.
standard functiow(d) = 1—2d/n, systemsP and() coincide Denote by F,[{] the set of real polynomials of degree at
and consist of the polynomials mostn in t. For any f € F,[¢], let f;(U),j € N,, be the
" L coefficients of the (unique) expansion gfover the system
Pi(t)= K[((1-tn/2), i=0,1,--,n U, ie., [ = S, [U)U;. PutQu(f) = f(1)/fo(U) if
Example 2 (continued)For the Johnson schem&’, (17) /fo(U) # 0. Note thatf — h:= f(ov) gives a one-to-one
holds and mapping of F,,[t] onto F(N,,) with A(j) = f(eu(j)) and
hi(u) = f;(U) foranyj € N, (see (14) and Definition 9). We
pi(d) =vi —d(v+1—d),q(d) =mi(1l - (dv/n(v—n))). restrict our attention to the casedtodes andd — 1)-designs
Hence, J” is P-polynomial with respect to the Standar({i.e.,codes with dual “distancel or more),which corresponds
functio,n " o the case ofD-codes andD-designs forD = NZ. We
say thatf e F,[t] has theproperty Ay (d) (By(d)) if
op(d) =1—2(d(v+1—d)/n(v+1—n)) h = f(ou) € F(N,) has the propert@, (N7) (respectively,
B, (ND). Let Ay (X, d) = min Qu(f) where the minimum is
and @Q-polynomial with respect to the standard functiomaken over all polynomialg € £, [¢] with the property2ly (d).
oq(d) = 1 — 2d/n. SystemsP and ( are defined by means Similarly, let B/ (X,d) = maxQy(f) where the maximum
of Pi(op(2)) = Hi(x) and is taken over all polynomialg’ € F,[t] with the property
Qi(o0(2)) = Hi(2), i= 0.1, .n. By (d). SinceQu(f) = Q. (h) for h = f(or), we have

Ap(X,d) = A (X,N? By(X,d) = B,(X,N%) (46
The number of independent parameters ofraolass P- v(X.d) (X, N2) v(X.d) (X, ) (46)
polynomial or @-polynomial scheme is equal tBn — 1. and we can use Theorems 4—6 to estimate the sizicoldes

In contrast with this observation, Leonard has proved thahd (d — 1)-designs with the help of the above extremum
all parameters of aP- and @Q-polynomial scheme can beproblems for the systery.
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Without going into any detail, let us finally point out that(The systermi/** consists ofr + 1 — a — b polynomials since
the classical examples df- and (2-polynomial schemes area + b weights become zero.) We put

induced by some classicpkrmutation groupgsee Section II-
D). Extensive research work has been devoted, in this context,

T’?’b(tl,tg; U) = Tk(tl,tg; Ua’b).

to the subject of “orthogonal polynomials and permutatiopet tZ’b(U) be the largest zero of the ponnomHE’b. If o

groups” [48], [119].

B. Adjacent Systems of Orthogonal Polynomials
and Two Extremum Problems

Some important estimates on fundamental parameters
codes are expressed in terms of values connected with syst
of orthogonal polynomials which ardjacentto the systems
P and@. Consider two functions andw on &,,. We assume
that the first function ¢hange of variablgos takes the values

o(n) = —1,0(0) = 1, and mapsV,, into the interval[—1, 1],
and the secondreigh) functionw has the properties(z) > 0

andX:? , w(¢) = 1. We call the change of variable standard
if it can be represented as a continuous decreasing function
on the whole interva[0, »]. It is known [49], [121] that the

orthogonality conditions

(47)

uniquely define a systeli = {U/;(¢): < € N,,} of polynomials
U,(t) of degreei with some positive value&;(1). We denote

by ¢y andwy the functionse and w for the systemU. In

is standard we can uniquely define the numtx#,jﬂé(U) by
ou(dP*(U)) = t2*(U). We will omit the indicesa, b in the
notationsU*, +2*(U), d»*(U) whena = b = 0.

0#Example1(continued)1_et K} (z) be the Krawtchouk

g%lgnomial of degreé: defined by (16) and let;(n) be its

smallest zero. For the Hamming sched¢

PAY(1 = 22/n) = CPY K7 (2 — a)

(2o /()

and C)"* = 1, and hence

dyP(Q) = di*(P) = di(n —a — b) + a.

where

k
=3

=0

(50)

In particular,
arw= (") a--

Example 2 (continued)iet H;"(z) and H,""(z) be the

particular, for the systemB and(@ we have (see (42) and (43))polynomials of degreé: defined, respectively, by (18) and

wp(i)=|X |7 m;, P(1) =v;, wo(t) = | X | v, Qi(1) = m;.
We assume that/ satisfies theKrein condition for any
1,7,k € N, there exist nonnegative real numbeti% such

that
U;()U;(t) = > g ;Ux(t)  (mod g™Y(1)).

By (23) and (24) this is fulfilled for the systenidand (. For
the systeml/ and anyk € N,, we define thekernelfunction
k
Ti(tr,t2;U) = > Ui(t)U; (£2) /Ui (1)
=0

For anya,b € {0,1} we consider a weight functiowgib on
N, such that

w' (i) = (1 — op (i) (1 + ov (@) wr (i) (48)

where the constant®? is chosen so that
n
wi (i) = 1.
=0

(19), and letdy(v,n) anddy, (v, n) be their smallest zeros. For
the Johnson schemé

i (oq(z) = Hy 7 (z)
and P"°(op(2)) is proportional toH; *™ *(z — 1). Hence

Ayt Q) = di(v—1,n = 1)
&Py =dp(v—2,n—1)+1

o-(1)-(7)

Now we consider two extremum problems for the system
U of orthogonal polynomials under consideration. For any
d € N2, the Ky;(d)-problemconsists in finding

Ky (d):= max Qp(f)

and

where the maximum is taken over all polynomigls F,; 1 [t]
such thatfo(U)>0 and f(¢t) > 0 for -1 < ¢t < 1. A
polynomial f having these properties for whicfiy(f) =
F(O)/fo(UU) = Ky(d) is called anoptimal solutionof the
Ky (d)-problem. These properties are in general stronger than
By (d) since they include nonnegativity gf on the whole

The initial change of variable;; and the new weight function jteryal [~1,1] (not only at pointsoy(i),i € N,) and

wg:" uniquely define a systeii®® = {U**(#): i € Np_o_s}

a restriction on its degree. This implies that for abiy

of polynomialsU;* (t) of degreei by means of the following polynomial {7 is either P or () association schem&

conditions:

n—a—b

> U ou(d)uy!

d=0

(ov(d)wy’(d) = U (1)8;,;. (49)

T

By(X,d) > Ku/(d). (51)

From now on we assume thatand # denote arbitrary
numbers such thdte N}! andé € {0,1}.
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Theorem 8 [103]: For any d =
polynomial

204+1-0 € N2 the

9 D(t) = (t+ DU (1))

of degreed — 1 is the unique (up to a constant factor) optimaLL

solution of the Ky (d)-problem and

o)\,
<1_U1<(—i>) 2 U,

=0

Ky(d) =

2489

where the minimum is taken over all polynomigiss £}, [{]

such thatfo(U)>0 and f(¢t) < 0 for -1 < ¢t < o. A

polynomial f having these properties for whicfiy (f) =
f@ )/fO(U) = Ly(o) is called anoptimal solutionof the

)-problem. Note that for = oy, (d) these properties as

compared td;; (d) say nothing about nonnegativity ¢f(U)

for i € N2, include a stronger condition thaf(oy (i) <

0 for i € N2, and introduce a restriction to the degree

of the polynomials. Note that this restriction means that,

in the Ly (o)-problem, polynomials whose degree does not

One can show thak;(d) is a positive-valued increasingexceed the number of the half-open interval containing

function ind € N,, and admits another expression

B T(V)UHS( -
Ky(@l+1-6)= <1 Uz(—> z%

For oddd and U = @ the polynomials

are considered. This also holds in the case of Ke(d)-
problem since(l n] is partitioned into the half-open intervals
(¢,t+1],4 € N._;, andd — 1 is the number of the half-open
interval containingd € N2

Theorem 9 [77], [81]: For any real numbercs,—1 <
o<oy(l),lete =e(o) andk = k(o). Then the polynomial

FO@) = (t = o)t + 1) (T (1,05 U))? (55)

of degreeh(s) = 2k — 1 + ¢ is an optimal solution of the

were first used in 1973 in [37] to obtain a lower bound on they (o)-problem. The functionLy (o) is equal to

size of (d —1)-designs (see Theorem 19 below). In the general

case Theorem 8 was applied to this end in [47].

Example 1 (continued)for the Hamming schem&; and

d=2+1-9
):qf’:z:é(” 9>(q—1)i-

Example 2 (continued)for the Johnson schemé&’ and
d=2+1-146

Kp(d) = Ko(d (52)

Kp<d>=§<”;9)<“;ﬁje) (53)
Ko =()"(725) (54)

Ui(1) )

1-— 1-—
< Ui(-1)
positive-valued and continuous, grows wih and takes the
following values at the left ends of these half-open intervals:

Ly(t) = Ky (20 +1 - ). (56)

We give some additional facts on the polynomi#l€’(t).
For o # t,% the polynomial f(*)(¢) is the unique (up to a
constant factor) optimal solution of the (o)-problem. For
o = ;" we havek(s) = l,e(c) = 1, and the polynomial
F(t) has factort + 1. For o = #;, we havek(s) =
l,e(o) = 0, and f(?)(¢) is also divisible byt + 1. In both
cases the polynomiaf(t) = f()(t)/(t 4+ 1) is an optimal
polynomial for the Ly (o)-problem as well. Moreover, for

UO,E 1 Ul,a k—1 _
b, W) "‘1‘2(0)> S U,
U (o) U5 (1) ) =

Now we formulate the second extremum problem for thg — tl ¢ , the polynomial(t — O-)f(o)( t)/(t+1) is proportional
systemU with a standard functiony;. It is known [103] that g the optimal solutiony?+1=9)(¢) of the Ky (21 + 1 — 6)-

the largest zerog” = ¢;*(U) of the polynomiald/;*” satisfy problem. These facts and Theorems 8 and 9 follow from the

the following inequalities

Bo <t <t k=1
where it is assumed thaf' = —1 = oy(n) andts', =
op(1). This means that the half-open intervpil ob( ))
is partitioned into the half-open intervalg,’ W l,t 29 and

[tllxo’til)’ k=1,-

o. Let k(o) = k wheno € [0, 8° 1,0 ),

) oro e [ty ,tk
and lete(o ) = 0if 0 € [f)_y thly) ande(o) =

o€ [tk( o) k( )) Thenitis clear thak(o) = 2k(o)—1+ (a).

For any numbers,—1 < o<oy(1), the Ly (o)-problem

consists in finding

Ly (o) := min Qu(f)

,n — 1. Enumerate in succession aII

these half-open mtervals from the left to the right by posmve

mtegers For any real numbet —1 < o <oy (1), denote by
h(o) the numberof the (unique) half- open interval containing

following main theorem which (as we shall see below) also
determines the inner distribution of optimal codes and designs.

Theorem 10 [77], [81]: For any 0,—1 < o< o(l), the
polynomial

(t— o) (t + 1T (o3 U) (57)

ith & = k(o) ande = (o) hask + e simple zeros

o, 0, Ogge—1 (0 <ap < -0 < Qpge—t)

whereay4+.—1 = o andag > —1 W|th equality holding if and
only if e = 1 ore = 0 ando = t.',. Moreover, for any
polynomial f(¢) of degree at mosh(c) = 2k — 1 + ¢ the
following equality holds:

k+e—1

foU) = (Lu(o Z A7 (W) fay)  (58)
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where fori = 0,---,k — 1 Example 2 (continued)in the case of the Johnson scheme
JY, whend belongs to the half-open intervals
(@) 1
Pite U)= € —
+e(U) (1 + i) (1 — i )15 (@i, ige; U) <%,ﬂ}
are positive, and in the case= 1 <(” ) Gl ”)7 n(v - ”)}
v—2 v—1
() = Ti(o, 1) > <d1’° +1 W}
00 V) = T~V (o, 1) — Tl =T, (o, —1) = ST

) ) o ) Lo ) ) the functionLq (o) for o = og(d) = 1 — 2d/n, respectively,
with equality holding if and only it = #; (herel/ is omitted  equals the expression given at the bottom of this page. This
in the notation}.(ty, t2; U/)). is obtained with the help of the optimal polynomia{®)(¢)

Example 1 (continued)in the case of the Hammingfor the Lg(o)-problem of the first, second, and third degree

schemeH for any d € N2 there existt € N} ; and (see [76]). _ .
e € {0,1} such that In order to prove that fos = o/ (d) the optimal polynomial

f)(t) for the Ly;(o)-problem has the properti (d) and
hence the inequality (X, d) < Ly (o (d)) holds, one must
check that all coefficientﬁi(")(U ) of its expansion over system
U/ are nonnegative. Note that in the cdse= ¢ by Theorem 2
the latter means that the symmetric matfix’ (o (9r(z, v)))
for (J-polynomial association schem{&, R) is nonnegative
K1, / 1 definite. Now it is known [77], [81] that all coefficients
(3 <77 >(q_ 1y - <n >(q_ 1)kKk—1 ,(d_ 1) 7U),i € Ny, are positive where(c) = 0 (or f(©)
t k K3 (d) has odd degre€k(o) — 1), in particular, foro = #;,
and also whero = #,°,l € N}. Moreover, the same is
wheren’ = n — . In particular, when the numbef belongs true for all o if the system{/ satisfies thestrengthened

di(n—1—-¢e)<d—1<dp_14:(n—2+¢).

Then Ly(o) = Lp(o) for o = o(d) = 1 — 2d/n can be
expressed by the following formula:

=0

to the half-open intervals Krein condition: for anyi,; € N,_, the coefficients of
the expansion of1 + t)U;" ()U; " (t) (mod g®V(t)) over
(g—1n+1 the systemU are positive. It is known that the syste@
<f’ ”} satisfies the strengthened Krein conditiondecomposablé&-
(g—D(n-1)+1 (g—Dn+1 polynomial schemes [77]. The class of decomposable schemes
< ) } contains some known infinite families &+ and@-polynomial
¢ ¢ association schemes, in particuldf, and J. It seems to
<d2(n —1)+1, (2= 1)(7;_ D+ 1} be true that all coefficients,”(U),i € Ny, are also

positive wheno belongs to the open intervat, .t ).

Unfortunately, this question is still open féfs) > 2. Thus

this, respectively, gives the values ) )
for any systeml/ under consideration

A Av(X,d) < Lu(t;%) = Ku(2l+1-6)  (59)
qd— (g —1)n
d if d> d*,(U) (see (56)), and for any
gd—(g— D -1 .
Ay(X,d) < Ly(oy(d 60
dl(n(g — 1) + Dinfg — 1) — gd+2) ~ ) v d s ulo(d) 0
gd2n{q—1)—q+2—qd) —n(n—1)(¢g—1)? if U satisfies the strengthened Krein condition.

The known earlier bounds for &codeY can be described
which are obtained with the help of the optimal polynomials terms of polynomialsf(¢) which have thed(d)-property

() of the first, second, and third degree. (Ffol@)>0,£i(Q) > 0fori = 1,---,n, f(1)>0,f(t) <0
vd
vd —n(v —n)
v(v —1)d

n(div—1)—(n—1)(v—n))
v(v — 1) d(n(v—n)—1—d(v—2))
dv—-1)2n(v—n)—v—dv—2)—nn—1)(v—n)v—n—1)
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for -1 <t £ ¢ = og(d)) and hence imphyY| < Q(f). 3) If d(Y) > & (Y), thenY is distance-invariant and
In particular, the bounds due to Blichfeldt [19], Rankin [97], D/(Y)i,P vy
Plotkin and Johnson (see [88]) are in fact based on the di(w,Y) = [ Xlgg T TP) = V197 ()
polynomial f(t) = ¢t — o with 0 = og(d) < :(Q) which for anyz € Y andi € D'(Y).

providesfo(Q) > 0, f1(Q) > 0. The Sidelnikov results [110], 4) If op is standard and(Y") > 2l — 6 + 1, then
[111] are obtained with the help of polynomialft) = , 1,6

2t — 52 for a suitable choice of an integér In [90] (and d(Y) < dyZy(P)

later in [65] for the Euclidean sphere) the polynomials with equality if and only ifl = s/(Y),6 = 4/(Y), and
f(t) — (t _ a)(Tk_l(t,a; Q))2 (61) (1 + t)a.Pll_’He(t) is dual-minimal forY.

A simple proof of Theorem 11 is based on the fact that for
were used, where the integéris defined byt 1 <o = anyf e F,[t], 33) withh = f(op) anda; = a;(z,Y),z €Y,
oq(d) <tx. The polynomials (55) were found with the help ofyives
the Lagrange method and presented in [73]. Some extremum "
properties of these polynomials were found in [112] and thex| f,(P) + | X]| Z ai(z,Y) f;(P)
were essentially used to prove the optimality of (55) for the i—d(Y)

Ly (o)-problem (see Theorems 10 and 9). n
The solutions of the(y;(d)- and Ly (o)-problems can also =|Y|f(1)+ Z ar(z,Y)f(op(k)). (63)
be applied to codes and designs in the Cartesian prodtiobf k=d'(Y)

m copies of aP-polynomial association schenfé&, R) with
the diStanCﬂnaxlSiSm 8R(a:i, yz) or E;’;l 8R(a:i, yz) onX™.
In particular, for the case of the distane@x <;<» Ir (2, ¥:)
on X™, this allows one to estimate ti&hannon capacitjl 06] f@o=(1- t)gd'(y)”’(t)
lity,—oo (A(X™,2))Y/™ of a graph(X, R;) (see [85), [91], and
[104], and also [79]). VP 02 ey
In the remainder of this section, considering a c&dm an FO) =A== ®)/ QA+t w
n-class P- and/or@Q-polynomial scheme we shall assume fofsee (45)) have these properties and give rise to the first and

Therefore, iff is a dual annihilator fod” such thatf(1) =0
and fo(P) >0, thend(Y") < deg f. The polynomials

simplicity thatn > 2,.4(Y) > 2,d'(Y) > 2. second statements. The third statement is obtained if one uses
the polynomialg” ")V of degrees’(Y) — 1 in (63) and
C. Codes and Designs iR-Polynomial Schemes takes (31) into account. To prove the last statement note that

Throughout this subsection, we consider arclass P- the left-hand side of (63) equals zero for

polynomial scheméX, R). In this casedr(z,) (see (1)) is Ft) =1 =)A+ (B ))2 (45, (P) — t)

a distance function an@X, R) can be considered as a metric .

spaceX with the metricg?(x,)y) = 9p(z,y). It follows that SNC€ folP) = 0 (see (48,) and (49) fon = 1,b = ¢) and

for any codeY C X, the metric spheregballs) d(Y)>deg f. More.over,s Q/g > [ by the second statement
and f(op(k)) > 0if k > d,7,(P).

Se(y) ={r € X: 0< d(z,y) <r} We can apply similar arguments to the rows of the outer

distribution M which has ranks’(Y) + 1 by Theorem 7.

Considering in (33); = a;(z,Y),z € X, and = f(op)

with a dual annihilatorf € F,,[t] for Y we find that

of radiusr centered at the code poingse Y do not intersect
whenr is equal to thepacking radiuse(Y) = | (d(Y) —1)/2]
and coverX whenr is equal to the covering radiugY").

This gives the followingsphere-packing and sphere-covering " ‘ ‘ _
boundsfor any codeY in (X, R): X1 ;a”(x’y)fz(P) = Y1), (64)
e(Y) p(Y) . .. . v
In particular, for the dual minimal polynomigl = /""" we
VI w < IXTLS Y] v 62) have
1=0 1=0 S/ (V)
Thus we have:(Y) < p(Y). A codeY for which e(Y) = |X| Z a;(z,Y) f;(P) = Y|
p(Y) is called perfect A codeY is perfect if and only if =0

d(Y') = 2p(Y') + 1 or, equivalently, the spheres,yv(y),y €
Y, form a partition of X.

From the existence of polynomials which are dual annihila- Ft) = (1= )" YLy
tors for codes we can derive some inequalities between th\(,?lié have
fundamental parameters.

and for any integefk, s’(Y) <k < n, and

k

Theorem 11:For any codeY in an n-class P-polynomial Z a;(z,Y)f;(P)=0
schemeX i=0
D dY)+d(Y) <n+2 with f(P) # 0. Since in both caseg;(P) depends only on

2) dY) < 2(Y) — 4(Y) + 1; equality implies D’(Y), this allows one to compute the outer distribution of a
[Y|Qp(f) = |X|wheref(t) = (14+)~" M (f¥P(#))2.  codeY from a “small set of data.”
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Theorem 12 [37]: Each column{; of the outer distribution ~ Theorem 14 [80], [81]: LetY be a code in &-polynomial
M = [My,---,M,] of Y is a linear combination of the all- schemeX with the standard functioap. If &'(Y") > dllfa(P),
one vector and the first(Y") columnsMy, - - -, M, (yy_1, the then
coefficients of which are determined by the inner distribution. .

Thus the firsts’(Y') 4+ 1 entries of any rowM (z),z € X, [Y[Kp(2+1-6) 2 |X] (67)
of the outer distribution of a cod¥ are not all equal to zero with equality if and only ifd(Y) = 2¢/(Y) — +/(Y) + 1 and

and they uniquely determine the remaining entries of the row + 1 QPIIHQ is a dual minimal polynomial fo” where

This has some interesting consequences presented in [3711 S(Y) and 6 = +(Y)
particular Thus the bounds (66) and (67) can be attained only simulta-

VY < (Y neously and in this casg is a maximald-code ford = d(Y)

p(Y) < s'(Y) and a minimat--design forr = d’(Y")—1. Note that (65) gives
a lower bound on the size of a code with a given number of

and, hence, for any’ dual “distances.” Probably a stronger inequality

) YK p(25'(Y) — +/(Y) +1) > X] (68)

Y1) v > |X]. (65) | _ .
P holds which (together with (66)) would imply statement 2)

of Theorem 11. Then all bounds (66)—(68) can be attained
Moreover, ifd(Y) > 2s'(Y) — 1, then the firsts’(Y") entries only simultaneously. In any case, this is true for perfect codes
of any rowM (x),z € X, are all zero except fog;(z,Y) =1 (0oddd(Y)). The inequality (68) was proved for the Hamming
when ¢ = 9(z,Y). For i = s (Y), the entrya;(xz,Y) scheme in [78] but it is an open problem in the general case.
is uniquely determined from (64). In particular, this gives The following statement extends Theorem 14 from the case
ai(z,Y) = |Y|/(IX]f"(P)) wheni = ¢/(Y) = 8(z,Y) d(Y) = d;%(P) (see (56)) to the general case under the
(see Example 1 below). ThereforE,is completely regular if additional restriction thaf’ satisfies the strengthened Krein
diY) > 2¢'(Y) — 1. condition. Therefore, we do not repeat the necessary and

Note that from (33) it also follows that for any € sufficient conditions for this special case.

Fyv)-1[t] there existse € X such that Theorem 15 [80], [81]: Let X be aP-polynomial scheme
" with standardrp» and assume tha? satisfies the strengthened

YIf(L) + Z (2, Y) f(op(k)) = 0. Krein condition. Then for any cod¥ C X
k=d' (Y) [Y|Lp(ap(d(Y))) 2 |X| (69)
This fact was used in [69], [83], and [118] for obtainingyith equality in the casel(Y) # d(P) if and only if

asymptotic upper bounds for thelcovering ragiuy’) oflinear d(Y) = 2¢(Y) —+/(Y) and the polynomial (57) witl/ = P
codesY C H; when the dual distancé (Y) grows linearly is dual minimal forY whereo = op(d(),k = kp(o),

with n. This approach is based on the inequalities e=cep(o), YY) =¢,5Y)=k+e.
) ) . Note that codesYy” for which the bounds of Theorems
|a; (2, Y)| < ai(Y), tEN,, veX 13-15 are attained belong to the class of codes satisfying

d(Y) > 2¢'(Y) — 4/(Y) (cf. statement 2) of Theorem 11).
which are satisfied by all linear cod&é5C H'; it makes use There exists the following characterization of codes in this
of the Chebyshev polynomials, characterized by the fact thaiss.
they exhibit the smallest deviation from zero. i i

We now give the linear programming bounds which follow '€orem 16 [77]:Let Y" be a code in aP-polynomial

from solutions of the above extremum problems for the systetfi€mMe X Witt] the standard functionop S“Ct‘ that
P (see (46), (51), (59), and (60)). d=d(Y) 22,5’ =s(V) 2 L,y = (V) 0 = op(d(¥)),
k=kp(o),e = Ep( ), and hence; ~ 1_‘; (P) < 0<tk (P).
Theorem 13:LetY be any code in @-polynomial scheme Thend =2s' —+' +1ifandonlyif s’ = k,v =1 —¢,0 =

X. Then il (P) Y [Kp(d(Y)) = |X], and (¢ + 1)~ P\ 111"()
is dual minimal forY; and d = 2s' — +/ if and only if
[Y|Kp(d(Y)) < [X] (66) & =k+4e+ =¢, o;ét,{ A (P), Y |Lp(o) = | X|, and the

polynomial (57) with = P is dual minimal forY.

with equality if and only ifd(Y) = 25'(Y) —+/(Y) + 1 and Note that for the class of codésin a P-polynomial scheme
(t+ 1)9P11_’00(t) is a dual minimal polynomial fod” where X defined by the conditiod(Y) > 2¢'(Y) —+/(Y) > 2, the
I =4%)andd = v (Y). only parametefY’| (or d'(Y")) uniquely determines all funda-

In particular, for oddd(Y") = 21 + 1 Theorem 13 gives the mental parameters, the inner distribution, @stransform (or
sphere-packing bound (left-hand side of (62)) and implies thaual distribution”), and the outer distribution of the codle
Pll’o(t) = X!_, Pi(t) is dual minimal for any perfect codg. Indeed, by Theorem 16 we know the dual minimal polynomial
The latter is the (generalizetljoyd theorenfor perfect codes f¥>"(t) and hence the sé'(Y) = {i1, - - - ,i,(yv)} of integers
[17], [37]. which are dual distanced(Y), s'(Y"),+(Y"). From Theorem
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10 and statement 3) of Theorem 11 it follows (by use of the Example 2 (continued)Apply (66) and (67) to a cod&”
polynomial g2"(¥):é:-P(¢) in (58)) that for any cod&” in the in the Johnson schem&* for whichd(Y') = 4 or d'(Y) = 6.

class Sinced;''(P) = 6 and
@, (V) = |X|p7 (P), G=1-,80)  (70) L
Kp@)=> (.. =969
where o = op(d'(Y)),k = kp(c),e = ep(c). The inner o\t i+l

distribution ofY” and, in particular, the parametes§”), (Y

can be found with the help of (31). Moreover, all codés (see (53)), we haveY'| < 759 or [Y| > 759, respectively.
in this class are distance-invariant and completely distandeonsider a codeY” for which either of these bounds is
regular. This allows us to compute the outer distributiofof attained. It must have the following propertiefY’) = 4,
with the help of (64) as was explained above. Note that frofh(Y) = 6,5'(Y) = 2,7/(Y) = 1, and

Theorem 16 it follows that the condition on a dual minimal 15

polynomial in Theorems 13-15 is a consequence of the first 114fY7(t) = o+ DPHY () = (¢ +1)(23 + 34t)
condition and can be omitted. 5 1
Example 1 (continued)Apply these results to a codé in = 17 () + A 0) + 7 Pa(t).
the Hamming schem& 24 for which d(Y) = 8 or &'(Y) = 8.
. Because
Since
dlv+1-4d)
Llpy _ _ =]-2-" -
) dyt(P) =ds(22) +1=28 op(d) Y p—
an

3. /93 D'(Y) = {6,8}. Using statement 3) of Theorem 11 and
Kp(8)=2) < ; ) =2" (31() \)Ne can find thaw(Y) = 262752, a4(Y) = 471960,

i=0 DY) = {4,6,8}, and ay(Y) = 280,a6(Y) = 448,
(see (50) and (52)), we hav’| < 22 or [Y]| > 212, ag(Y) = ;50. Again in this caseY is completely distance-
respectively, by (66) and (67). Consider a cdddor which "egular, sincei(Y’) > 2s'(Y') — 1, and one can compute the
either of these bounds is attained. Any su¢hs a maximal outer distribution} of the codeY'. In fact, a codeY” having
8-code and a minimaf-design, and must have the foIIowingthe above properties exists and is unique; |t_|s tr_\e “octade
propertiesd(Y) = 8,d'(Y) = 8,5'(Y) = 4,7/(Y) = 1, and code” formed by all vectors of Hamming weight in the

extended Golay codél;(24,8) (see [88]).

385 isti icati i
912 (Y, Py _ £+ 1Pt More sophisticated applications can be found in [6], [36],
7o) 512 (t+ D () [37], and [76].
=2%(t + 1)(9* — 1)
3 1 D. Codes and Designs i@-Polynomial Schemes
6 Let us consider codes in anclass@Q-polynomial scheme

=0

(X, R). Using (32) withh = f(og) wheref € F,,[t] are some
Since op(d) = 1 — 2d/n, D'(Y) = {8,12,16,24}. annihilators for a cod&” one can obtain the following dual
Using statement 3) of Theorem 11 (or (70)) and (31) wenalog of Theorem 11.

H _ / —_ — <
2?:(;; i ;g%l’)é(g/) _ ZS(YY))’ azg’(f ;nda;?$§i)212aiz$5 Theorem 17:For any code} in an n-class@-polynomial
for all ¢ € N,. (This means thal” must beformally self- scheme(X, k)
dual) Finally, d(Y) > 2s'(Y) — 1 and hence” is completely 1) d(Y) +d'(Y) < n+ 2.
distance-regular. By use of the method explained above, we2) @'(Y)<2s(Y)—~+(Y)+1; equality implies|Y'|=Qq(f)

can mechanically compute the outer distributignof the code where
Y. The following table gives the entrie¥/;(x) for 0 < ¢ < 8, ) sYR 2
and for allz € F3*. J@) =@+t ")

dst | 0 1 2 3 4 5 6 7 38 # 3) If d'(Y) > s(Y), thenY is distance-invariant and

0 1 759 1 D(Y),i i

1 ] 253 24 ai(@.Y) = V]ge Q) — ")

2 1 77 352 276 .

3 121 168 2024 f?r anyex < ig a(;‘dl 3 D (Y>)' b1 th

4 6 64 360 1771 4) If og is standard and/(Y") > 2/ — 6 + 1, then
In fact, a codeY having the above properties exists and is d(Y) < dll’_ee(Q) (71)

unique (within equivalence); it is thextended binary Golay
codeY = (»(24,12) (see [88]). Thus our table gives the with equality if and only ifl = s(Y),6 = +(Y), and
weight distribution of all cosetsf G(24,12). (1+)°Q%(t) is minimal for Y.
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Many results concerning codé&sin @-polynomial schemes Let R|Y be the set consisting of thgY) + 1 nonempty
are based on the existence of the representation relations B; N Y2 (those witha;(Y) # 0). Then (Y, R|Y)
- is called therestriction of (X, R) to Y. It can be shown
Qu(og(Or(x,v))) = ZW,;’(@W; ke N, (72) thatif &'(Y) > 2s(Y) — 1, then (Y,R[Y) is an s(Y)-
=1 class @-polynomial scheme [37]. This theorem is a kind of
) . “dual” of the result mentioned in Section IV-C about com-
_(see_ (10) and ‘(‘13)).”|n particular, let us emphasize the fOIIO\ﬁﬂetely distance-regular codes. The intersection numbers of
ing important “dual” analog of (65). this scheme can be computed with the help of the polynomials
Theorem 18 (The Absolute Bound [37]For any cod&” in F¥Q and gP:4Q,
a Q-polynomial scheme Next, we give linear programming bounds which follow
from solutions of the above extremum problems for the system
Y] < Zm' (73) Q (see (46), (51), (59), and (60)). Recall that the repre-
- 7 sentation (72) was used to prove that for the decomposable
=0 2-polynomial schemes (in particular, for the Hamming and
The proof of Theorem 18 is based on the fact that|ie Johnson schemes) the systeph satisfies the strengthened
functions Y9 (o (Or(x,v))),y € Y, belong to the space Krein condition [77].
generated by the functions, ;(z),k € N,yy,i € N} . . . .
equal tod, , whenz € Y, and éence are Iin((aa)rly indeper]ident Theorem 19 [37], [47]: For any cod&” in a@-polynomial
X . scheme(X, R)
functions inz € X.
In fact, the fundamental parameters of a cobe are Y] > Ko(d'(Y)) (75)
determined from the sequencg = o;(Y),i € N,, and
its Q-transform (see Section 1lI-C). Analogously, for anyvith equality if and only ifd'(Y") = 2s(Y’) —v(Y') + 1 and
+ € X, we can consider the sequenge= a;(z,Y),i € N,, (t+1)?Q;%(t) is aminimal polynomial fod” wherel = s(Y)
and define the corresponding parameters; in particul@hd 6 = ~(Y').
d'(z,Y),s(z,Y),y(z,Y). Note that, by (40),d'(Y) < The well-known Rao bound [98] forr-designs (or-
d'(z,Y) for any z € X, and, similarly to statement 2) ofthogonal arrays) in the Hamming scheme and the Ray-
Theorem 17d'(z,Y) < 2s(z,Y)—~(z,Y) foranyz € X\Y. Chaudhuri-Wilson bound [99] far-designs (block designs) in
Therefore, if we assume thadt(Y) > 2/ — # andz € X\Y, the Johnson scheme are special cases of (75) for these schemes

s(Y)

thens(x,Y) > 1. For the polynomial (see (52) and (54)). A design which satisfies equality in (75)
0 10.0 5 1.0 is called atight 7-designwherer = d’(Y") — 1. The subject of
J) = (A +8)7(Q (1) /(#,75(Q) — 1) tight 7-designs in the Johnson scheme has been introduced by

Ray-Chaudhuri and Wilson [99] and has been investigated by

several authors (see especially [7], [134], and the references

therein). In particular, the polynomid); °(t) = ©_, Q;(t) is

minimal for any tight2/-design. This is (a generalized version
of) the Ray-Chaudhuri—-Wilson theorefar tight designs [99];

kz_:l ax(z,Y)f(oq(k)) =0 it is a “dual” of the Lloyd theorem for perfect codes [37],

- [101].

ion. . S . .
;nsei od%fea(st;J rzp'zo: kf?lv:fhs;ar;o;;d, i:]hzrtf(rggééf ))oTn'?s Theorem 20 [73], [77]: LetY be a code in &-polynomial
T Gimelw) S B quality P scheme(X, R) with the standard functiowg. If d(Y) >
k € N¢ while 1,6
" d;Z5(Q), then

s(z,Y) = |{k € N} ap(z,Y) >0} > 1.

of degree2l — § — 1 we havefy (@) = 0 (see (48) and (49) for
a = 0,b = 6), and the use of = f(og) anda; = a;(x,Y")
in (32) shows that

n

Y] < Kg(204+1—6) (76)
This implies that for any cod¥ in a Q-polynomial scheme

(X, R) with standardso such thatd'(Y') > 21 — 6 with equality if and only ifd’ (Y) = 2s(Y) — ~(Y) + 1 and

(t4+1)°Qy% (t) is a minimal polynomial fob” wherel = s(Y")
p(Y) < dy(Q) (74) andf = ().
] o ] ) . . Analogously, the bounds (75) and (76) can be attained only
with equality if and only if there exists a pointe X\Y such gjmitaneously and in this cadé is a minimal-design for

that(1+#)°Q%° (¢) is a polynomial of minimal degree which . _ &(Y)—1 and a maximati-code ford = d(Y'). Note that
equals zero at = o(9r(z,y)) for eachy € Y. the absolute bound (73) gives an upper bound on the size of a

~The inequality (74) for the Hamming scheme is due tgyge with a given number of “distances.” Probably a stronger
Tietavainen [127]. For the general case it was given togethﬂequality

with the necessary and sufficient condition for its attain-
ability in [51]. Note that (71) and (74) give the following V] < Kq(2s(Y) —4(Y) +1) (77)

upper bounds on the minimum distance and covering radius _ ) )
of a (21 — §)-designY: holds which (together with (75)) would imply statement 2) of

Theorem 17. Then all bounds (75)—(77) can be attained only
dY)<d%(@Q)  pY) <dlQ). simultaneously. In any case, this is true for tighdesigns with
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evenr (oddd’(Y")). The inequality (77) was proved in [77] for distance-invariant and fors(Y")-class@-polynomial schemes

all decomposablé&-polynomial schemes (in particular, for thewhose intersection numbers are determined with the help of

Hamming and Johnson schemes), but it is an open problenttie polynomialsf¥>? and ¢”?():%@ (see [37, Theorem 5.25]

the general case. or [81, Theorem 3.21]). Note that from Theorem 22 it follows
The following statement extends Theorem 20 from the cas®t the condition on a minimal polynomial in Theorems 19-21

aly) = dll’_ee(Q) (see (56)) to the general case under ths a consequence of the first condition and can be omitted.

additional restriction that) satisfies the strengthened Krein

condition. Therefore, we do not repeat the necessary aBdBounds for Spherical Codes and Designs

sufficient conditions for this special case. The results of Section IV-D are applicable to infinite

Theorem 21 [73], [77]: Let (X,R) be a Q-polynomial distance-transitive spaces (see Section II-D). The unit sphere
scheme with standared and assume thaf) satisfies the n
strengthened Krein condition. Then for any cdden (X, R) gl — {x = (1, -, z,) € R™: Z e 1}
=1

Y] < Lo(og(d(Y))) (78)
with equality in the casel(Y) # dll’_ee(Q) if and only

if d(Y) = 2s(Y) — +(Y) and the polynomial (57) with n
U = Q is minimal forY whereo = oo (d(Y)), k = ko(o), d(z,y) = | Y (wi—0)?
e=eg(0),7Y)=¢s5(Y)=k+e. i=1

For the Hamming and Johnson schemes the bound (78

) . -
in the first interval whendi’O(Q) < d(Y) < n coincides and the isometry grou@ = O (n) consisting of all orthogonal

with the well-known Plotkin and Johnson bounds, respectivefjairices of ordern. Any finite setY’ c S"~* (called a
(see [88] and the calculation af (o) in Section IV-B). spherical codg is characterized by the finite sdd(Y") of

For d(Y) < d-°(Q), (78) improves upon these bounds. (Wéiistinct nonzero values od(a:,y) when z,y €Y. It gllows
remind that (78) is true in the second interval and in affS [ define for any spherical codé the minimum distance

odd intervals without the restriction of the strengthened KreffY ) = min D(Y) and thedegrees(Y’) :=|D(Y’)|, and alslo
condition.) the parametery(Y") which equalsl if the diameter2 of 5™~

Note that codesy” for which the bounds of TheoremsP€longs toD(Y_), and equals zero othervi/ise. We can also
19-21 are attained belong to the class of codes satisfyifigasure the distance betweeny € 5"~ by the angle
d(Y) > 2s(Y) — y(Y) (cf. statement 2) of Theorem 17) and” = ¢(2,4),0 < ¢ < 7, where
forming s(Y')-class Q-polynomial schemes. There exists the n
following characterization of codes in this class. cosp(x,y) = Z%Uz =1-jda,y)

1=1

is a distance-transitive space with the Euclidean distance

Theorem 22 [77]: Let Y be a code in aQ-polynomial o _
scheme (X, R) with the standard functionri, such that and denote byy(Y’) the minimum angular distanceetween
d=dY)>2s=s0Y)>17=9Y)0 = ogldY)), distinct points o_fY. It is clear thatd(Y") = Zsin(<p(Y)/_2).
k = kqo(o),e = eg(o), and hence The normalized invariant measysen S ~! is the normalized
11 - Lo surface area o™~ 1. Let o,,_1(¢) be the surface area of
tk7—1+a(Q) L o<ty (Q)

n—1 . n—1
Thend = 2s—~y+1ifandonly if s = k,y = 1 — &, ST =y v e ST el ) S ¢
o=t 15.(Q), [Y] = Ko(d(Y)), and (t + D' Q' 77 (+)  and leto, 1 = 20, 1(r/2) be the surface area &f"~*. It
is a minimal polynomial forY’; andd’ = 2s — ~ if and only is well known thato,,_, = 2x™/?/T'(n/2) and
if s=k+e,vy=c,0# ti_lij(Q), Y| = Lg(o), and the

1
polynomial (57) witht/ = Q) is minimal for Y. (8", ) = on-1(9) — cn/ (1—22)=3/2 g,
For the class of codeE in a ()-polynomial scheméX, R) On—1 cos
defined by the conditiod’(Y") > 2s(Y) —~(Y) > 2, the only (79)

parametetY’| (or d(Y")) uniquely determines all fundamental  m N1 1 .
parameters, the inner and dual distributions of the cbde wher_e Cn = 1“_(5)/(1“( 2 )F(?)) gnd_l“(a:) is the gamma
and also the intersection numbers of thepolynomial scheme function. The inner and outer distributions of a spherical code

formed byY. Indeed, by Theorem 22 we know the minimaV are given by the values

polynomial f¥>?(¢) and hence the sé(Y) = {i1, -, i5)} 1 . _

of integers which are “distancesd’(Y), s(Y),v(Y). From aa(Y) .—MI{(x,y). vy €Y, d(z,y) =d}|, de[0,2]
Theorem 10 and statement 3) of Theorem 17 it follows (by _—

use of the polynomiay()+5:Q(¢) in (58)) that for any code and, for anyz € S

Y in the class aa(z,Y)i={(z,9): y € V,dw,y) =d}|, de[02].

; =[Y|p\ . j=1,--
ai,(Y) = Ylpis. (@), J=Lest) Note thata,(Y) and aq(z,Y"), considered as functions of
whereo = og(d(Y)), k = kg(o), € = eg(o). The dual d € [0,2], differ from zero only at a finite set of point
distribution ofY" is computed by (30). Codés in the class are For any functiona; which has this property (in particular, for
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aq(Y) and ay(z,Y)) we can define its)-transformas the  Theorem 23 (The DGS Bound [45For a codeY C S™~1,

infinite sequenceéa;)2, where let 7(Y) = 2] — 6. Then
ai= Y augi(d),  i=0,1,---. l+n—2 l+n—1-6
de[o,2] Y] > n—1 + n—1 (82)

As in the case of association schemes we can define (see

Section 1I-C) the setD’(Y), the dual distanced’(Y) of ¥ With equality if and only if7(Y") = 25(Y) — (V).

and itsstrength7(Y) = d'(Y) — 1. Sphericalr-designsy’  Note that if 5 is the largest zero of{”(¢) and "’ is
(i.e.,7(Y) > ) were introduced in [45], in connection with anthe largest zero 0f®°(t), thent* = p{"=3/2Fe.(n=8)/2+

approximation formula for the evaluation of multidimensionand that) satisfies the strengthened Krein condition.
H n—1 i .
integrals overS of the following form: Theorem 24 [73], [74]: For a codeY ¢ $"-L, let o =
/ () dulz) ~ % Z w(z). (80) o8 o(Y),o0 = (n—3)/2, andk = kg(o),e = eg(s). Then
Sn—l

- |Y| does not exceed
€Y

The codeY c S™~! is ar-designif and only if the approx- n potlats
+k—2 n+k—3+e = (o)
imation formula (80) becomes equality for all functiongr) << >+< )) <1—k1—> (83)

. g . X n—1 n—1 P‘}:‘H’E(a)
which are polynomials in coordinates of= (xy,---,z,) € k
Sn—1 of degree at most. Thus B(S™ 1,7 + 1) is the . . . T
minimum number of nodes in the approximation formula undénd, in particular, ife < p;,"“™", then
consideration.
Now we verify thatS™~* is “Q-polynomial” with respect Y] < <l +n— 2) N <l +n—1- 9>. (84)
to the standard change of variabiéd) = 1 — d?/2 (this —\n-1 n—1

means that(d) is a decreasing continuous function such that _ _ . _

o(0) = 1,0(2) = —1). Indeed, from (28) and (79) it follows The bound (83) is attained if and only if

that the orthogonality and normalization conditions

L (Y)>28(Y)—~vY)—-1>1.

c"/ Qi1)Q; (A=) "2 dt = mi6; 5, Qu(l) = ma
-1

(81) The class of spherical codes for which the bounds of

. . . Theorems 23 and 24 are attained is described by Theorem 22;
uniquely define polynomial(t) of degreek such that these codes carrg-polynomial subschemes. Many examples
ar(z) = @r(o(2)) (k= 0,1,---) and hence can be found in [45], [74], and [77]. In particular, the tight
En(z,y) = qu(8(z,y) = Qilo(d(z,y))). design inS” containing 240 points and the tight-design in
. . 523 containing 196 560 points are the maximal codes with the
In the case of5™™" the subspac#’. consists of all homoge- angular distance 60 they allow one to determine tHessing

neous harmonic polynomials in = (z1,---,2,) € S"7 of  numbersin dimensionss and 24 [74], [96].
degreek and has the dimension The following asymptotic bound follows from (84). How-
n4+k—1 n+k—23 ever, it was obtained earlier with the help of the MRRW
mk:( n—1 >_< n—1 ) k=01 polynomials (61).
Thus Theorem 25 (The KL Bound [65]):For any fixed ¢,

0it) :miPK"’g)/Q’("’g)/Q(t) 0<p<3,andn — oo

1
where - logA(S"_l, 2sin f)
) n 2
’ 1 L g 14 sing l14sing 1—sing 1—sing
PRty = S (e L+ f = S FPlog— Pl
¢ 7 t— 7 Sin @ 2sin ¢ 2sin ¢ 2sin ¢

2%‘(“”") =0
@

(= 1)t 1) It should be noted that Theorems 23 and 24 give the best
linear programming bounds in the class of polynomials of

are the Jacobi polynomialsnormalized bfo“a(l) = 1. restricted degree. The necessary and sufficient conditions for
(The Jacobi polynomialst’f“"(t) with « = 3 are called optimality of f(°)(¢) for the Lg(s)-problem without this
the Gegenbauer polynomia)sAll results of Section IV-D are restriction were found in [24] and [25], together with an
valid for spherical codes except for statement 1) of Theorem ttiiprovement of (83) in some range when these conditions
whose proof uses the finiteness of association schemes. (@he not fulfilled. On the other hand, in [135] there was found
absolute bound fof™~! was proved in [45] in the strong form a continuous functiorf(¢) having the propertieg(t) > 0 for
(77).) In particular, the{y(d)- and Lg(o)-problems and their —1 < ¢t < 1 and f;(Q) < 0, = 7,7 + 1,--+; this yields
solutions are valid for countable systef@gcompare (47) with an improvement of the DGS bound (82) ferdesigns ifr is
(81)) and give rise to the following two results. sufficiency large.
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Theorem 26 [135]: For any spherical desighi ¢ S»~! (see (42)—(44)) one can check that thedual of g () is the
(n—1)/2,(n-1)/2 polynomial |X|/2gn=4+2 () /g:¥(U7) and henceg*Y (t)
[Y|on—1(arccos p iy )= on-1.  (85) has the propertie®l, (d) and B (n — d+2). This shows that

In a certain sense, the sphere-packing bound Ap(X,d) <1/g*Y (U) = |X|g2~ 42V (T)
Y]on_1((Y)/2) < oy Buy(X,d) = 1/gy "7 (U) = [X]g95" (U)

and the bound (85) are analogs of the bounds (62) and (68} ImPplies thefirst pair of universal bound81]

for P-polynomial schemes.

The projective spaces im dimensions overR,C, and
quaternionsH (n = 2,3,---) also areQ-polynomial; the Each of these bounds is attained if and onlg(¥ ) +d'(Y) =
corresponding system@ are systems of Jacobi polynomials, 4+ 2. |n this caseg?¥):? is an annihilator ang® -2 is
and satisfy the strengthened Krein condition. Elements of thegeyual annihilator forY.
spaces can be considered as lines going through the origin. Thggr the Hamming schemH?" and the Johnson scherdg,

results of Section IV-D are applicable to codes and designstig first pair of universal bounds takes the following forms:
the projective spaces which were studied earlier in [44], [60],

1X1gg O (P < Y] < 1/g5°79(Q).

[65], and [77]. The bounds for codes in the projective spaces ¢/ 7 Y] < g+ (87)
have been successfully used to estimate “crosscorrelation” of v v
codes [65], [75], [76], [109]. dY)-1 —d(Y)+1
SOREVAIER anl ks (58)
n
F. Universal Bounds for Codes and Designsinand <d/(y) — 1) <n —d(Y) + 1)

Q-Polynomial Schemes—Asymptotic Results

In this subsection we consider a colfein an n-class P- respectively. These bounds for codes are called the Singleton

i ) . and Johnson bounds [88], and codes satisfying equality in (87)
and Q polynomial schemeX' and tacitly suppose that the r (88) are called MDS-codes and Steiner systems, respectively
functionsop and g are standard. Of course, all results of

Sections IV-C and IV-D are applicable. We give three pairs ?8]’ [15]. In particular, (87) is attained for the Reed-Solomon

universalbounds for codes and designs in such schemes. T;g)des and (88) is attained for the “octade” code (together with
i

e
o " e o fc i s bouncs e vl o 1T BN 9) 67 1) and 1),

for all codes in all schemes under consideration. second pair of universal bound87]

First, for a P- and (2-polynomial association schenié we
extend the duality in bounding the optimal sizesdbtodes
and(d — 1)-designs to the polynomial case. For ah¢ I, [t]
and U (we usel/ for either P or @, and usel/ for the other o ) o .
one), we define ai/-dual polynomialf©) to f as follows: with equality in the left- and right-hand side if and only if
dY)=2s(Y)—~v¥)+1andd(Y) =2¢(Y) -+ (V) +1,
. n ) respectively.

=X Zf(ffﬁ("))Ui Finally, if the systems) and P satisfy the strengthened
=0 Krein condition, the results of Sections IV-C and IV-D imply

(cf. (39)). Analogously, using (42)—(44) one can show that the third pair of universal bound¢78], [81]

X1

Ko@) < IVl < iy

(89)

O (o (i) — | X2 4T N
FO oy (d) = | X|V2£,(0) Lo(or (@) < Y| £ Lolog(d(Y))) (90)
and hence with equality (whend(Y) > 1 andd’(Y) > 1) in the left- and
(T ; right-hand side if and only ii(}Y) > 2s(Y) — +/(Y) and
f=OH® () (1) = 1X] d'(Y) > 2s(Y) — y(Y), respectively.

The characterization of the codes for which the bounds in
(89) and (90) are attained is given by Theorems 16 and 22. A
" list of the known codes in the Hamming and Johnson schemes
for which (90) is attained can be found in [77] and [78].
Ap(X,d)Bo(X,d) = Bp(X,d)Ao(X,d) = |X|.  (86) For finding asymptotic results thg following special cases
of bounds (89) and (90) are useful:

and f has the propert@l(d) or B(d) if and only if f)
has the propertyBy (d) or 2y (d), respectively. In particular
for any d € N}, the following equalities hold [80]:

As an example, consider the polynomigi¥ (¢) defined by K
(45) and note thay“Y (o;(4)) > 0 for j € N,, according to | X| th if d>2k+1
the assumption thaty is standard. Using the orthogonality Ag(X,d) < i—0

> <9 (91)
condition and the propert k
Propery > mi, if d>dy(Q)
=0

Ur(DUi(og(k)) = Ui(1)Us(ou (i)
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k . and hence, fotim,_. 2 = 7 andlim, . ¢ = §, where
Zmi’ if d > 2k +1 0<n < % and0 < 6 < n, the second bound in (92) gives
Bo(X,d)y>< =0 (92) rise to the asymptotic bound
X[ /3w, i d > G0(P). 1 5 5
i—0 - logy B(J,,d) = H(n)—nH<§"—7(7)) —(1—77)H<%>-
In particular, in the case of the Hamming schedg, if _ o _
1< k=k(n)<n(g—1)/qgandn — oo, then In the typical situation the second bounds in (91) and (92)
N _1 o (which follow from the third pair of universal bounds) are
di (Q)/n = v4(k/n) +o(1) better than the first ones when the parametés sufficiently
where large and become worse whérs small. In particular, this is
true for the bound (93) which for sufficiently smallis worse
v,(z) = l(q —1—(q—2)z —2/(¢— Dx(1 — x)) than the Hamming asymptotic bound
q
1 n
(see [90] and [78]). Notice thay, () is a decreasing continu- - log, A(Hy,d) = 1 H(b,q).

ous function on0, (¢ — 1) /q] which coincides with its inverse _ ) o
function, that is;y, (v,(z)) = =. Therefore, ifq is fixed and ~ ThiS raises the problem of “smoothing” these bounds. A
similar problem of bounding th&hannon reliability function

lim 4 =6, 0<6<(qg—1)/q for probabilistic channels was considered in [108] where the
n—ee n T straight-line boundwas found. Theprinciple of the multiple
then the second bounds in (91) and (92) give rise tofitise packing(applicable to the translation schemes, see Section V)
form of the MRRW bound for cod§s0] gives the Bassalygo-Elias inequality [12]
1 3 " n n n n
- logg A(H, d) S H(v(8),9) (93) <w>A(H2',2d) < 2"A(JR, d) (96)

and the following asymptotic bound for designs [78]: i i
wherel < w < n/2, and the straight-line bound fdd;' [69]

1
“log, B(H;d) 2 1- H(y(0).0)  (99) -
A(H? . d V-1 < JdAEH T d—2r
where (Hy )ZZ:%(,L)(Q ) < CAH]T, r)
H(z,q) = —wlog, z — (1 - x)log, (1 —x) +log, (¢ —1)  wherer < 1,2r < d. A consequence of (95) and (96) for
is theShannon entropyin the case of the Johnson schedfie o d 1
if lim,, oo % = ¢ andlim, .., & = n, where0 < ( < 7 ,}E}go n 8, 0<é6< 5
and0<n < i, then
=2 is the second form of the MRRW bound for codi@g]
4°(Q)f0 = £(C) +o(1) . )
. n _ _ -1 —
where, for anyn, 0 < n < % - logy A(Hz,d) = 1 max <H(77) H<§,] <2)>)
&,(x) = n(l—n) —a(1 - =) wheren € [5 (1 —v1—26), 3] and&; () is defined above.
14+2y/z(1-x) This becomes better than (95) wigh= 2 when § < 0.272.

is a decreasing continuous function which maps the intervalThe argument that leads to (96) does not apply to the

: . imal design problem. However, a similar result is valid in
0, 7] onto[0, 7(1—n)] (see [90] and [81]). The inverse function™"'Ma ! / \
2_1(]@ caL be( exp)r]essed in the following explicit form: terms of the linear programming bounds. Rodemich (see [100],
K [42]) used the fact that any nonnegative-definite function

. 1 2 h(8u(x,y)) on HY is nonnegative-definite on (subsef) as
& (@)= s\ 1-yi- 4(\/77(1 —n) —z(l—x)— 37) - well and proved the following analog of (96) for objective
functions of linear programming bounds:

Therefore, iflim,—o 2 = 7 and lim,—.., ¢ = &, where "
0<n < % and0 < § < n(1 —n), then the second bound <w)AQ(H§,2d) < 2"Aq(Jy, d). (97)
in (91) gives rise to the asymptotic bound [90]

1 - . Combination of (97) with (86) forX = Hy and X = J
S logy A(Jy,d) = H(E,(6)) (95) gives the following results [80]:
where H(z) = H(z,2). On the other hand, as was shown Bp(H3,2d) > Bp(J};,d) (98)
in [81], if limy—oo 2 = n and lim,—.c £ = ¢, where n
0<¢<nl-n) ando<y < 3, then <w>
B(HY,2d) > Bp(Jl,d) = ——"—. (99)
do(P) o = &7HC) + of1) Aq(Ji, d)
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In particular, (99) and (95) (considered as a bound onThe homomorphisms of the grou@X,+) to the group
Ag(J2, d)) for (C*,-) are referred to as the (irreducibleharactersof X.
(Henceforth we often writeX instead of(X,+).) The set

lim d =6, 0<6§< 1 of characters ofX has the structure of an Abelian group,
noee n 2 isomorphic toX itself; this character group is called tdeal

give the following asymptotic bound [80]: of X and is denoted byX’. We shall use a bracket notation for
characters, that iz, 2’y :=2'(x), for z € X andz’ € X'.

1 log, B(HY,d) = max <H(77) _ H<§_1 <§>>> (100) The group characters satisfy tbethogonality relations
n

7 T\ 2
(,a") = | X600 (z,2") = | X[60,0-

wheren € [ (1 —V1-26),1]. a;( mze):(

The essential difficulty in extending the second form of the . , o
MRRW bound to the case > 3 is caused by the fact that the!t IS POSSible to identifyX” with X" so as to have the symmetry
natural generalization of (96) connedi§” with subschemes of property (z,z') = (2/,z) for all z € X, 2’ € X. _
the association scheme considered in Example 3 which are ndf'om then-class translation schemeX, k) we define a
O-polynomial. Some results in this direction were obtained Rartition I1:={Xo, Xi,---, X, } of the groupX"into n + 1
[1] and [125]. blocks X; :={z € X: (a:,O) € RZ} Thls |mpI|esX0 = {0}

Finally, in addition to the (nonconstructive) results (96)—(9gjNd-Xi» = —X; (for the pairing: — ). The relationft; can
which give bounds for the Hamming space from bound® recovered from the block; as follows:
for the Johnson space, let us point out a “constructive” Ri={(z,y) e X% z—ye X} (101)
relationship between codes and designs in the Hamming and
Johnson schemes. It is the celebradsdmus—Mattson theorem |t can be shown that there exists a unique partifiin=
[4], which allows one to obtain good combinatorial design§X6’X{’...’X;/} of the dual groupX’ into n + 1 blocks
and constant-weight codes from certain codes in the binagy, with X} = {0} and with the following property. For
Hamming scheme. A strengthening of this result can be foupd: ¢ N,,, define¢;: X’ — C andyx: X — C by

in [29].
bia)= D (wal)  wn(e)i= Y (waf). (102)
V. TRANSLATION SCHEMES oCXi ='eX,
Then ¢, is constant over each blocK; andy is constant
A. Definitions and Preliminaries over each blockX;. More precisely

Certain association schemes are invariant under “transla- N P .
tions,” of the form(x,y) — (z + 2,y + z). Examples are $i(') _p"’(@ for 2 € Xj, ]?’L €N (103)
the Hamming scheme and the composition scheme, described V() = qu(i) for z € X, i,k € N, (104)
in Section II-A (Examples 1 and 3). We shall examine the ) .
appropriate generalization, under the name of “translatiefwere;he nufm)?e?(k) andg.(¢) are thep-numbers and the
schemes,” borrowed from [26]. A comprehensive treatmefi1uMpPers of(X, ).

i , SN
of that subject is given by Camion [32]. The material of this Th.e part|t|on}1 (of X ), wil be. called thgdua}I of tD2e
section is mainly taken from [42]. partition I1 (of X). FromIl’ we define a partitio?’ of X

like in (101). More preciselyR’ :={R{, R}, ---, R}, } with

Definition 10: Let (X, +) be a finite Abelian group, and let ) . o ) )
(X, R) be ann-class association scheme. Assume {HatR) =12 y) e X7y =2’ € X}

is (X, +)-invariant, i.e., . . .
(X +) t It can be shown thatX’, R') is a translation scheme with

if (z,y) € R;, then(z + 2,y + 2) € R; respect to the dual groupX’, +). From (102) it follows that
the p-numbers of(X’, R') are the g-numbers of( X, R) and
forall z € X,i € N,. Then(X, R) is said to be aranslation converselyThus with an obvious notation, we have the duality
scheme with respect to the grogp’, +). relationsp; (4) = qx(¢) and ¢;(k) = p;(k), given in (25). In
particular,vj, = m andm) = v;.

In the context of the Krein duality (Section II-C), this
leads us to introduce the following definition of duality for
translation schemes. It is equivalent to a concept introduced
by Tamaschke for commutative Schur rings [123].

We briefly examine the Hamming schent&; from this
viewpoint. LetHy,---, H,, be n Abelian groups of ordey,
and consider their direct produdf := H; x --- x Hy,. It is
clear thatH ' is a translation scheme with respecteoy of
these group structures.

This simple example shows that a given association schemé®efinition 11: Let (X, R) be a translation scheme, with
(X, R) may be a translation scheme with respect to severakpect to a given Abelian grodgX, +), and letll = {X;: i €
group structures. Further explanation of the phenomenon wil,} be the corresponding partition ok. The translation

be given in Section V-C. scheme( X', R'), with respect to the dual groupX’, +) and
For a translation scheme, thenumbers and the-numbers corresponding to the dual partitidd’ = {X;: & € N,} of
(Definition 3) can be determined as follows. X', is called thedual of the translation schemgX, R).
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An interesting treatment of duality in translation schemeamplies|Y'||Y°| = |X|. As a consequence of the orthogonality
is given by Godsil, in relation with the theory @&quitable relations on group characters, we obtain

partitions [54] v if o' eY°
As an example, consider once again the Hamming scheme Z(x,x’) = {l) k !f x, < ye (105)
(X, R), together with the Abelian group structufé = H; x @€Y ’ it ¢ Ye.

.-+ x H,. In this case, the blocK; in II consists of thej-ary
n-tuples of weight (i.e., those having nonzero components).
Let us identify the dual grou’ with X. It turns out that the
dual partitionII’ coincides with the weight partitiohl. Thus

If Y is a linear code of length over[F, (in the usual sense),
thenY° = Y1, the orthogonal o¥. This stems from the fact
that the characters df-7;, +) are given by

for a suitable ordering, we havé/ = X, for all ¢ € NV,,, which , 2 ST

shows that the Hamming schemesslf-dual The formulas (z,2") = exp <7 Tr («'w )>

(103) and (104) lead to the expressions (17) of theand

q_numbers in terms of the Krawtchouk p0|yn0mia|s_ for all .T,.T/ S [F:IL Here, Tr denotes thdrace from the field

Similarly, the composition scheme (Example 3 in Section I 10 its prime subfield=,. In the binary caseq = p = 2,
A) is a self-dual translation scheme. There are other interestithgs reduces tdz,z’') = (1) .
families of that type [41], [43], [89]. Some examples of The next result is a generalization of the MacWilliams

translation schemes that amet self-dual can be found in [30] identities on the weight distributions of a linear code and its

and [37]. orthogonal. It produces a clear interpretation of Theorem 3
in the restricted framework of additive codes in translation
B. Additive Codes in a Translation Scheme schemes. The proof is based on (103)—(105).
As a generalization of the classical notion ofirgear code Theorem 27 (Generalized MacWilliams Identities [37],
over a field alphabet (in Hamming scheme), we shall examit#2]): The inner distribution(ax(Y°) = [Y° N X} [)i_, of
additive codes in a translation scheme. Y © is proportional to the&)-transform of the inner distribution

J(Y) =Y nX;D)~, of Y. More precisel
Definition 12: A code Y in a translation scheméX, R) (@(Y) = Di=o P y

is said to beadditiveif Y is a subgroup of the underlying ar(Y°®) = Y| ta,(Y) ai(Y) = [Y°|"tal(Y°).

Abelian group(X,-+). _
Consider the inner distributiofiag, a1, - - -, a,,) of an ad- As a consequence, the fundamental parameters (see Section

ditive codeY” (see Definition 5). It follows from (101) that !ll-C) of @ code 1" in a translation scheme are related

a; counts the code points belonging to the blakk in the to those of its annihilator cod&™ by d(Y) = d'(Y®),

partition II, that is, d(Y) = dY°),sY) = §°), s ) = s¥°),
YY) = A(Y°), v(Y) = v(Y°).
a;, =6;(Y) =Y NnX,, fori e N,. Finally, let us examine the outer distributial/ of an
additive codeY (see Definition 8). In view of (101), noting
Next, we define the “annihilator code” of an additive codéhat Y = —Y", we obtain
Y by generalizing the usual notion of the orthogonal code of
a linear code in Hamming scheme. (The terminology is not Mi(z) = |(z +Y) N X, fori € Np,z € X.

standard, but “annihilator” seems preferable to “orthogonalll’hiS means that the-row M(z) of M is the distribution of
in the general setting.)

the coset coder + Y with respect to the partitiofl.

Definition 13: Let Y be an additive code in a translation For the outer distributiom/’ of the annihilator cod&™®,
scheme(X, R). The annihilator codeof Y (with respect to we similarly haveM; (z) = |(—z' +Y°)N X}|, with k € N,
the given groug X, +)) is the codeY® in the dual translation and ' € X’. As an extension of Theorem 27 we obtain
scheme(X’, R') defined by the following expression for the&)-transform of the outer
distribution rows:

S M pik)y=Y°| > (w.a)).  (106)

yeEYNX;

Yoi={2' € X": (z,2'y =1forallz € Y}

It is clear thatt™® is an additive code iX’, R'). Similarly,
for an additive codd” in (X', R'), we define its annihilator

code to be By use of (106) we can derive a remarkable result (Theorem
28 below) that allows us to decide whether a given additive
Vi={reX: (z,2’)=1forallz’ € V}. codeY carries a (translation) subscheme (df, R), and to

o - . - characterize the dual of this subscheme. Note that by Theorems
This is an additive code ifX, R). For double annihilators, 7 and 27 the rank of the outer distributidd’ of Y° is equal

we simply have to s(Y) + 1.
Y =°(Y°) V=(°V)°. Definition 14: Let ¥ be an additive code of degree
s = s(Y) in a translation scheméX, R). If the restriction
The character groufy” of Y is related toY° by Y’/ = (Y, R|Y) is an association scheme (withclasses), then it is

X'/Y* (the group of coset codas +Y° with 2’ € X’). This called asubschem®f (X, R).

Authorized licensed use limited to: Herzeliya IDC. Downloaded on January 20,2024 at 06:49:20 UTC from IEEE Xplore. Restrictions apply.



DELSARTE AND LEVENSHTEIN: ASSOCIATION SCHEMES AND CODING THEORY

Theorem 28 [37]: Given an additive cod&” of degrees,
the restriction(Y, R|Y") is a subscheme dfX, R) if and only
if the outer distributionM’ of the annihilator cod&’° has
s + 1 distinct rows.

2501

(£1,4£1), namely,

10

]

In this case, the dual scheme of the translation schedmeeffect, for po:=(1,1) we obtain

(Y,R|Y) is (Y',R*) where R* = {Rj§,---, R} consists of
the s + 1 relations onY” := X’/Y° defined as follows: a pair
of coset code$z| +Y°, 2, +Y°) belongs to a given relation
Ry if and only if the outer distribution row’(z] — z%) is a
fixed (n + 1)-tuple (among thes + 1 possibilities).

For example, Theorem 28 applies to the extended binary

Golay codeY” examined in Section IV-C. Recall thatis self-
orthogonal:Y = Y+ = Y°. The codeY has degres = 4,

p1i=pog = (1,-1)
p2i=p1g = (-1,-1)
p3i=p2g = (—1,1)
Po = P3g-

In terms of the usual binary alphabf, 1}, this induces the
cyclic permutation(zo, 1, 22, x3) of the binary ordered pairs,

and the outer distributiod/’” = M of its orthogonalY® has ith
five (= s + 1) distinct rows. Thed-class association scheme

carried byY is mentioned at the end of Section IV-D. Sincerq:=(0,0)

(Y, R|Y) is Q-polynomial, its dual schemg”, R*), carried
by the factor groug” = X’/Y°, is P-polynomial. It is the

x1:=(0,1) x2:=(1,1) x3:=(1,0).
(107)

As a conclusion,M, containstwo regular Abelian sub-

“distance scheme” for the cosets of the extended binary Golgsoups: not only the elementary Abelian grodp x Z,

code (see [26, p. 361]).

(consisting of the diagonal matrices), but also the cyclic group

The reader familiar with the Golay code may be interestetl, generated byy.

in a more sophisticated example. Taketo be the perfect
binary Golay code of lengtl23 (and dimensionl2). This
code has degree 7. The orthogonal cod& * can be
shown to be completely regular; its outer distributibf has

Note that the cyclic permutation in (107) corresponds to
the Gray mapbetweenZ, x Z, and Z4, that is, (0,0) —
0,(0,1) — 1,(1,1) — 2,(1,0) — 3. This map underlies the
“concrete approach” t@4-additive binary codes [57].

eight distinct rowsM’(x), corresponding to the eight values Let us now turn to the general case ®@f with n > 2. By

O (z,Y+) =0,1,---,6,7 (see [26, p. 362]).

C. Z4-Additive Binary Codes

Important research work has been devoted recently to the

class of binary codes that are additive ow&y, the cyclic

considering partitions of the coordinate positions in blocks
of size 1 or 2, we obtain a whole class of regular Abelian
subgroups ofi,, of the form

G=17kx17,  withk+2m=n.

group of order (see especially [57] and [92]). This subsectioftach of the groups? (together with a corresponding co-
aims at showing how that subject fits into the framework afrdinate partition) provides?y with a translation scheme

association scheme theory.

structure, and gives rise to a well-defined class of additive

From a group-theoretic viewpoint, translation schemes cépinary) codes (see Definition 12).

be presented as follows. Létut (X, R) denote the automor-
phism group of a given association schefdé R). Assume
that Aut (X, R) contains an Abelian subgrou@@ which is
regular on X, in the sense thaf is transitive onX and has
order |.X|. This provides the point sek with the structure
of an Abelian group(.XX,+), isomorphic to&, through the
definition

xd +al ::a:gh, forallg,h € G
where z( is a fixed point inX. It is clear that(X, R) is
a translation scheme with respect (&, +) (see Definition
10). In fact, the “translation structures” ¢X, R) correspond
exactly to the regular Abelian subgroups &fit (X, R).

Let Y be an additive code with respect &, and letY ™
be the annihilator code of” (see Definition 13). In view of
Theorem 27, the inner distributions &f andY® (which are
their ordinary weight distributions) are related to each other
by the MacWilliams identities in thesual sense

The “homogeneous cases” afe = 73, which yields the
class of linear binary codes, agtl= ZZ’/Q (for evenn), which
yields the class o¥ s-additive binary code$57]. In the latter
case, the annihilator codg® of Y is the natural orthogonal
codeY - over the cyclic groufZ,.

A very interesting example is provided by théerdock
codesk and theirz,-orthogonalsCt which are the “Preparata
codes”P (see [57]). Quotes are used here becgBsis not
exactly the same as the official Preparata code, although they

Consider the binary Hamming schenit} (see Example both have the same essential properties and, in particular, the
2 in Section 1I-D). Its automorphism group is the monomiaame distance distribution. This example is quite remarkable
group (or hyperoctahedral group),, of degreen (and order for the following reason. It has been known for a long time that
n!2™). As we shall see}M,, contains several regular Abelianthe weight distributions of the Kerdock and Preparata codes are
subgroups. the MacWilliams transform of each other, although these codes

For n = 2, the monomial groupM, (of order 8), is arenonlinear (over F2). The result in [57] alluded to above
the symmetry group of the squafd, —1}2. It contains an says thatk is Z4-additive, and it identifies th&4-orthogonal
elementy of order4 that cyclically permutes the four verticesKt of X as a certain “Preparata cod@.
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Note Added in Proof

It is worth pointing out that the class of additive (binary)[

30]

codes considered at the end of Section V-C coincides with the

class ofadditive propelinear codemvestigated by R# and

Pujol [136]. [32]
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