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Abstract—This paper contains a survey of association scheme
theory (with its algebraic and analytical aspects) and of its
applications to coding theory (in a wide sense). It is mainly
concerned with a class of subjects that involve the central notion
of the distance distribution of a code. Special emphasis is put on
the linear programming method, inspired by the MacWilliams
transform. This produces upper bounds for the size of a code
with a given minimum distance, and lower bounds for the size
of a design with a given strength. The most specific results are
obtained in the case where the underlying association scheme
satisfies certain well-defined “polynomial properties;” this leads
one into the realm of orthogonal polynomial theory. In particular,
some “universal bounds” are derived for codes and designs
in polynomial type association schemes. Throughout the paper,
the main concepts, methods, and results are illustrated by two
examples that are of major significance in classical coding theory,
namely, the Hamming scheme and the Johnson scheme. Other
topics that receive special attention are spherical codes and
designs, and additive codes in translation schemes, including
4-additive binary codes.

Index Terms—Association schemes, codes and designs, du-
ality, linear programming, orthogonal polynomials, polynomial
schemes, translation schemes, universal bounds.

I. INTRODUCTION

A SSOCIATION scheme theory is part of what is now
called algebraic combinatorics [10], [54]. It has two main

origins. Association schemeswere introduced in statistical
(combinatorial) design theory by Bose and Shimamoto [23],
and the appropriate algebraic setting was given by Bose and
Mesner [21]. In fact, the subject can be traced back to a paper
by Bose and Nair in 1939 [22].

The second origin is group theory and, more precisely,
character theory of finite groups, developed by Frobenius,
Schur, and Burnside. For example, as pointed out by Ban-
nai and Ito [10], a paper by Hoheisel in 1939 derives the
orthogonality relations for group characters by a method
belonging to “association scheme theory” (before the appear-
ance of association schemes in combinatorics) [61]. Another
pioneering contribution in this area is a paper by Kawada
on character algebras [67] (see [10]). In fact, one may even
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say that association scheme theory is as old as Frobenius’
representation theory of finite groups (see [11]).

In combinatorics, an association scheme is defined in terms
of certainregularity properties. In the “group case,” the associ-
ation scheme structure arises from certainsymmetry properties,
which directly induce the desired regularity properties. Thus
following Bannai and Ito, we may say that association scheme
theory is a “group theory without groups” [10]. Such a
distinction between regularity and symmetry can be found
in several subjects. An important example, which belongs to
association scheme theory, is the distinction between distance-
regular graphs and distance-transitive graphs [26].

The association scheme approach was introduced incoding
theoryin 1973 [37] to deal with a collection of topics involving
the notion of the “distance distribution” of a code (see [35]
and [36]). One of the main subjects is the general concept of a
-design or a code with “dual distance” and a universal

(lower) bound on the size of -designs. (Term “universal”
means here that the bound is valid for all-designs in all
association schemes under consideration.) This allows one to
explain the unified nature of different combinatorial objects
and bounds. If a covering radius of a code in a metric
space characterizes a degree of the approximation ofany
element of by elements of , then the “dual distance”
of characterizes an approximation degree ofby “at
the whole.” This idea turned out to be very useful for some
problems of numerical analysis [45] and cryptography [122]
and was extended to any finite and compact infinite metric
spaces in [81]. Another important topic is the problem of
finding a universal (upper) bound on the size of a code with
minimum distance or, briefly, a -code (see [82] and
[88]). Short introductions to “association schemes and coding
theory” were given by Sloane [155] and by Goethals [55].
The same subject is treated in detail in a recent paper by
Camion [32].

One of the most significant (although elementary) dis-
coveries was the fact that the MacWilliams transform1 of
the distance distribution ofany code is nonnegative as the
mean value of nonnegative definite functions (matrices) over
the code [35], [37]. This “innocent appearing result” (to
quote Welch, McEliece, and Rumsey [131]) has far-reaching
consequences. The method of obtaining bounds for-codes
based on nonnegative definite functions depending
on distance , i.e., , has been

1Recall that theMacWilliams identitiesrelate the weight distribution of
a linear code (over a finite field) with that of its orthogonal code by a
well-defined linear transform (over the reals) [86], [87].

0018–9448/98$10.00 1998 IEEE

Authorized licensed use limited to: Herzeliya IDC. Downloaded on January 20,2024 at 06:49:20 UTC from IEEE Xplore.  Restrictions apply. 



2478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

applied by Blichfeldt [19], Rankin [97], and Sidelnikov [110],
[111]. However, for association schemes (and some of their
generalizations) there is a description of all such functions.
This makes it possible to apply a linear programming method
for finding the best universal bound for-codes (and -designs
as well) [35], [37]. For a class of association schemes of
important interest for coding theory, the corresponding linear
programs can be treated as extremum problems for systems
of orthogonal polynomials. Thus any choice of a permissible
polynomial gives rise to a universal bound for-codes. In
1977, McEliece, Rodemich, Rumsey, and Welch (MRRW)
[90] proposed a polynomial which gives an improvement of
the best asymptotic bound obtained before in [111]. One year
later, another polynomial was proposed [73]; it gives rise to
a universal bound for-codes that improves upon the MRRW
bound and is attained for many cases in different spaces
although it gives the same asymptotic result. It turned out
[77], [112] that this polynomial is an optimal solution of the
corresponding extremum problem in the class of polynomials
of a restricted degree. This progress in bounding-codes
allowed one to improve bounds on theShannon reliability
function [107] for some probabilistic channels (see [65]).

In classical coding theory, dealing with codes in aHamming
scheme, the MacWilliams transform involves a family of
orthogonal polynomials [121] known as theKrawtchouk poly-
nomials[68]. Surprisingly enough, this fact was not uncovered
before 1972 [35], although the “polynomial property” of the
MacWilliams transform was pointed out by MacWilliams
herself in 1963 [86]. The importance of the role played by
Krawtchouk polynomials in coding theory is well recognized
nowadays [78], [82], [88]. It can be explained by the fact
that these polynomials give theeigenvalues of the distance
relation matrices of the Hamming scheme[37]. This was first
proved implicitly by Vere-Jones in the binary case [128]. A
thorough investigation of the group-theoretic significance of
the Krawtchouk polynomials was given by Dunkl [46].

The familiar “block codes of length over a -ary al-
phabet,” which belong to classical coding theory, can be
called “codes in the Hamming (association) scheme ”
The general association scheme approach provides us naturally
with a considerable extension of the theory in that it applies
to “codes” and “designs” in any association scheme[37],
[39]. This combinatorial structure consists of a nonempty
finite set endowed with a collection of binary relations

having strong regularity properties. The adja-
cency matrices of the graphs generate a commutative
and associative algebra (over the complex numbers) both for
the matrix product and the pointwise product. This is called
the Bose–Mesner algebraof the association scheme. It has
two distinguished bases: the basis consisting of theadjacency
matrices , and the basis consisting of theirreducible idem-
potent matrices By definition, there exist well-defined
complex numbers and such that

The -numbers and the -numbers play a promi-
nent role in the theory. They satisfy some well-definedorthog-

onality relations. (In the case of the Hamming scheme, we
have , where is the Krawtchouk
polynomial of degree.) It appears that the-numbers
are the eigenvalues of the adjacency matrix

There is an importantformal duality in the theory, called
the Krein duality, which permutes the roles of the matrix and
pointwise products in the Bose–Mesner algebra [8], [42], [95].
This duality is a rich source of research ideas: “trying to make
the theory closed under duality.”

A code in an association scheme is a nonempty subset
of the point set (with the inherited relations ). The
inner distribution2 of is the -tuple where

counts the ordered pairs of code points with
In this general context, the “innocent appearing

result” alluded to above is the fact thatthe -transform of the
inner distribution is nonnegative, in the sense that
is a nonnegative real number (for This is
the basis of thelinear programming methodto find upper
bounds for -codes and lower bounds for -designs in an
association scheme [37]. “Duality” between-codes and -
designs manifests itself in the fact that any linear programming
bound for -codes gives a linear programming bound for

-designs and conversely [80]. Explicit universal bounds for
codes and designs in some classes of association schemes have
been obtained by use of this approach [37], [73], [76], [77],
[81].

Certain parts of the theory can be developed further, when
appropriate restrictive assumptions are imposed on the- or -
numbers. An association scheme is said to be a-polynomial
schemeif the -numbers can be represented in the form

where is a real polynomial of degreein
and are distinct real numbers. The orthogonality

relations on the -numbers show that is a system
of orthogonal polynomials. There is a similar (dual) definition
and a similar result for a -polynomial scheme(involving the
-numbers instead of the-numbers) [37].
The -polynomial property has a clear interpretation:

contains the pairs of points that are at distanceapart in
the “generator graph” In other words, is a
distance-regular graph. This subject was introduced by Biggs
in 1969 (see [18]); it is treated in great detail by Brouwer,
Cohen, and Neumaier [26]. The dual notion of a-polynomial
scheme is equally interesting and has been investigated by
several authors [10], [54], [71], [72], [77], [81], [93], [94],
[126]. It should be noted, however, that this notion does not
have a simple “combinatorial meaning.”

The theory of -polynomial schemes can be extended so as
to include “continuous analogs” such as theEuclidean sphere
and theprojective spacein a unified framework [48], [54],
[65], [77], [81], [93], [116], [119]. In particular, the linear
programming method can be applied to derive upper bounds
for spherical codes with a given minimum distance and lower
bounds for spherical designs with a given strength (see [45],
[77], [81], [116], and [135]).

If the point set is endowed with the structure of
an Abelian group and if the relations are “translation-

2A related notion is theouter distribution, which enumerates theRi-
associates of each pointx 2 X in the codeY:
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invariant” with respect to that group, then the association
scheme is said to be atranslation scheme(with respect
to the given group). This notion is equivalent to that of a
commutative Schur ring, investigated in detail by Tamaschke
[123]. There exists adual translation scheme (with respect
to the dual group of ). If is an additive code in ,
i.e., a subgroup of , then there is a natural definition of
an annihilator code in the dual scheme. (The relation
between and generalizes the relation between a linear
code in Hamming scheme and its orthogonal code )
The inner distributions of the codes and are related
by generalized MacWilliams identities, in the sense that they
are the -transform and -transform of each other (within
scaling) [32], [37], [42].

Thus the theory of translation schemes is quite interesting in
that it provides the formal Krein duality with an actual duality
interpretation. Furthermore, in this restricted context, there is
a simple criterion to check whether a given additive code
carries a “subscheme” of the translation scheme, and to
characterize the dual scheme of(see [37] in the case of the
Hamming scheme).

This paper aims at giving a self-contained account of those
parts of association scheme theory that are especially relevant
to coding theory (in a wide sense), along the lines of the
present introduction.

Section II contains the basic definitions; it is focused on
the Bose–Mesner algebra and its formal duality. Section III
introduces the subject of codes (and designs) in an association
scheme, with special emphasis on the notions of the inner and
outer distributions. This also includes the linear programming
approach and a duality in bounding the sizes of codes and
designs based on the existence of two orthogonality conditions.
Section IV gives up-to-date bounds on fundamental parameters
of codes and designs in- and/or -polynomial schemes. Two
extremum problems for systems of orthogonal polynomials are
considered and their optimal solutions are used to describe
the best known linear programming bounds. The results for

-polynomials schemes are extended to the case of the unit
Euclidean sphere. For - and -polynomial schemes, three
pairs of universal bounds and main asymptotic results are
presented. Section V deals with translation schemes and their
additive codes; it includes an introduction to -additive
binary codes.

II. BASIC NOTIONS

A. Definitions and Examples

Let be a finite set of “points,” with For an
integer , consider a set of
nonemptybinary relations on (i.e., ), forming
a partition of the Cartesian square of

For integers and with , we shall use the
notation for the integer interval and put

Definition 1: The pair is said to be an -class
association schemeif

a) is the diagonal, i.e.,

b) For the converse

of belongs to
c) There exist integer numbers , called intersection

numbers, with , such that, for each pair
, the number of points with and

is equal to the constant (for ).

Condition b) induces apairing over , defined by
The number is denoted by and is called

the valency(or the degree) of the directed graph ; it
counts the points with , for any fixed
Clearly, and

In most coding-theoretic applications, the definition above
can be made more restrictive. The association scheme
is said to besymmetricif all its relations are symmetric.
Thus condition b) is replaced by

b) for each
In other words, a symmetric association scheme has atrivial

pairing, i.e., for all (Notice that the identity
in c) can be omitted in the symmetric case, since it becomes
a consequence of the other requirements.)

In particular, a -class association scheme is
equivalent to astrongly regular graph[20], [105] in the
symmetric case, and to askew conference matrixin the
nonsymmetric case [13], [56].

Note that we can consider an association scheme
with an ordering of as a space with
the function which is defined as follows:

if and only if (1)

In the symmetric case this function has, in particular, the
properties if and only if and

, but, in general, does not satisfy the triangle in-
equality and hence is not a distance function. On the other
hand, a metric space with a distance function
which takes values from is a symmetric -class association
scheme with if and only if for any

and , the number

(2)

depends only on and In fact, we state that this is
true for the first two examples below.

Example 1: Let be the th Cartesian power of
a finite alphabet , with Let
denote theHamming distance function

Then with is a symmetric -
class association scheme, called theHamming schemeand
denoted by It appears as the natural framework of the
classical theory of “block codes” [82], [88]. When is a
prime power, can be endowed with the structure of the
finite field In this case, where

is the Hamming weight function, given by
More generally, this applies

to the case where has the structure of anadditive Abelian
group. (No multiplicative operation is required here.)
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Example 2: Let be the set of binary -tuples of a fixed
weight , with Thus

For , define

and

Then is a symmetric -class association scheme, called
theJohnson schemeand denoted by It is a “subscheme” of
the binary Hamming scheme with
The Johnson scheme plays a useful role in combinatorial
coding theory.

Example 3: Let and
The compositionof a point in is the integer -tuple

defined by

Assume that is an Abelian group. Define a set of binary
relations on as follows. A pair in belongs to
a certain relation if and only if the difference has a
specified composition. Then is an -class association
scheme, with called thecomposition scheme.
It is symmetric when for all , i.e., when is an
elementary Abelian -group (of order ). In particular,
the composition scheme with reduces to the binary
Hamming scheme

There are several other families of association schemes that
have interesting applications in coding theory. Let us mention
five of them: i) the association scheme relative to thesplit
weight enumerator[42], [88]; ii) the Lee scheme[124]; iii) the
nonbinary Johnson scheme[1], [124], [125]; iv) the association
scheme of matrices over a finite field[41] (which has
applications in crisscross error correcting codes [52], [102]);
v) the association scheme of skew-symmetric matrices
over a finite field[43]. In the last two cases, the relations
are defined from therank metricover the matrix set

Of course, there exist applications of association schemes
outside the area of coding theory (in a wide sense). It is
especially worth saying that association schemes have recently
found considerable interest inspin model theory(a branch of
mechanical statistics). The idea is due to Jaeger (see [63] and
the references therein).

Finally, let us mention some constructions that produce
association schemes from other association schemes. In par-
ticular, there is the notion of theextension[37], product [54],
and merging [32] of association schemes.

B. The Bose–Mesner Algebra

It proves very useful to investigate a combinatorial structure
such as an association scheme by matrix algebra meth-
ods. Let denote the set of square complex matrices

of order , where rows and columns are labeled with
the points , and the entry of is denoted

by The directed graph is represented by its
adjacency matrix , defined by

for
for

(3)

Definition 2: Let be an -class association scheme
(see Definition 1). TheBose–Mesner algebraof , de-
noted by , is the complex vector space generated by the
adjacency matrices , that is,

(4)

From the fact that is a partition of and from condition
a), it follows that contains the all-one matrix and the unit
matrix , since

(5)

Condition b) says that is closed under conjugation
and under transposition , whence under

conjugate transposition , since

(6)

Condition c) says that is closed under matrix multiplication,
and that multiplication in is commutative, since

(7)

This shows that the -dimensional vector space
defined by (4) has the structure of acommutative algebra
(over ). As indicated in Definition 2 (with some anticipation
in the use of the term “algebra”), is usually referred to
as theBose–Mesner algebra(or adjacency algebra) of the
association scheme (see [21]).

For a symmetric association scheme, we have
for all In this case, we can define the Bose–Mesner algebra
over thereals, i.e., replace by in (4).

The adjacency algebra is known to besemi-simple. This
means that there exists a unitary matrixof order that
reduces each matrix to a diagonal form

As a consequence, possesses a unique basis of
irreducible idempotent matrices which are
mutually orthogonal

for (8)

In particular, The rank of will be denoted
by , and the numbers will be referred
to as themultiplicities of the association scheme By
definition, has eigenvalues and with multiplicities
and Notice that and
Considering the inner product

(9)

for complex functions defined on one can represent
the matrix in the form

(10)
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where is an arbitrary orthonormal basis
of the linear space generated by the columns of (It is
orthonormal with respect to (9).)

Definition 3: The -numbers of an -class association
scheme are the complex numbers , with

defined from the expansion of the adjacency matrices
in the basis of the irreducible idempotent matrices of

the algebra , i.e.,

for (11)

Analogously, the -numbersof are the complex num-
bers , with defined from the inverse expansion,
within the normalizing factor , i.e.,

for (12)

These numbers play a major role in the theory. It follows
from (11) that the -number is the eigenvalueof
relative to the -dimensional space spanned by the
columns of In particular, (valency of ).
Notice that (rank of ). In view to (3) and (1),
(12) can be written in the form

(13)

If the association scheme is symmetric, then its
-numbers and -numbers arereal.
Let denote the linear space of complex (or real in

the symmetric case) functions defined on In particular, the
-numbers and the -numbers are values of the-

functions and -functions which
form two bases of This implies that any function

has a unique expansion over either of these bases

(14)

The following result expresses the well-knownorthogonal-
ity relations for the -functions and -functions. It appears as
a consequence of (8), basically.

Theorem 1: The -functions
are pairwise-orthogonal on with respect to the multiplic-
ities and the -functions
are pairwise-orthogonal on with respect to the valencies

More precisely

In view of the fact that the relations (11) and (12) are inverse
of each other, the-numbers and the-numbers are related by

(15)

Example 1 (continued):For given values of (the
“length”) and (the “alphabet size”), and for , we
define theKrawtchouk polynomial as follows [68]:

(16)

Clearly, is a polynomial of degree in The -
numbers and the-numbers of are the values assumed by
the Krawtchouk polynomials at the integer points
More precisely

(17)

The valencies and multiplicities are

Example 2 (continued):For given values of (the
“length”) and (the “weight”), the valencies and multiplicities
of the Johnson scheme are given by

For we define theHahn polynomial3 and the
dual Hahn polynomial as follows [66]:

(18)

(19)

Clearly, is a polynomial of degree in It is easily
seen that is a polynomial of degree in
The -numbers and the-numbers of can be determined
(see [37]) from these polynomials by

(20)

C. Formal Duality

The adjacency matrices and the idempotent matrices
play dual roles in the theory. This formal duality, which

interchanges the-numbers and the-numbers, will be referred
to as theKrein duality [8]. Let us examine this subject in some
detail. The Bose–Mesner algebra is closed not only under
ordinary matrix multiplication , but also under
pointwise(or Hadamard) multiplication
defined by This stems from
the fact that the adjacency matrices are “idempotent” and
“mutually orthogonal” with respect to the pointwise product

for (21)

The formal Krein duality under discussionpermutes the
roles of the matrix product and the pointwise product. Thus

3In fact, these are the Hahn polynomials ofspherical type.
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the identities (8) and (21) are dual of each other. As duals of
(5) and (6), we have

where is a well-defined pairing over For a
symmetric association scheme, this pairing is trivial:
for all

Let us stress the fact that the idempotent matricesare
Hermitian and nonnegative definite, since their eigenvalues
are and . (It can be viewed as a dual of the property of
adjacency matrices, having entriesand .)

The following property is essential for the linear program-
ming method introduced in Section III below.

Theorem 2: For any function the matrix
is Hermitian and nonnegative definite if and

only if
Next, we examine the dual of identity (7), that is,

(22)

The numbers defined from (22) are usually called theKrein
parameters; they are the duals of the intersection numbers
In particular, and when Thus the
multiplicities are the duals of the valencies Notice that

is a Hermitian nonnegative definite matrix according
to (10). Hence, by (13) and Theorem 2 the Krein parameters
satisfy (see [55] and [101]).

By use of (7) and (22) we deduce that the intersection num-
bers and the Krein parameters are thelinearization
factors relative to the -numbers and to the -numbers

, respectively, in the sense that

(23)

(24)

Two -class association schemes and , with
, areformal dualof each other if the -numbers of

are the -numbers of , and conversely, i.e.,

(25)

A necessary condition for an association scheme to have a
formal dual is that its Krein parameters be integers (since they
are the intersection numbers of the dual).

Example 1 (continued):In view of (17), the Hamming
scheme is formally self-dual. In fact, it is actually self-
dual in the strong sense of “duality in translation schemes”
(see Section V below).

Example 2 (continued):The Johnson scheme has no
formal dual. However, the general Krein duality applies; it
permutes the Hahn and dual Hahn polynomials.

D. The Group Case and Generalizations

In Examples 1–3 of Section II-A, theregularity properties
defining the association scheme structure are induced by some
symmetry properties, i.e., by a certain “group of automor-
phisms.” We now say a few words on this subject (see [10],
[58], and [132]). Let be a transitive permutation group
acting on the point set It induces a partition of into
a well-defined set of orbits (By
definition, such an orbit contains the images
of a fixed pair under all mappings ).
The resulting structure satisfies conditions a)– c) of
an association scheme, except possibly the “commutativity
condition” In any case, the adjacency matrices

form the basis of a subalgebra of (It is called the
Hecke algebra.) This algebra is commutative if and only if

(for all ).

Example 1 (continued):Let be the permutation group on
generated by two types of mappings:

i) a permutation on the coordinates;
ii) in each coordinate position, a permutation on the

alphabet symbols.

This group has order , and it is transitive on The
corresponding structure is the Hamming scheme
In particular, the binary Hamming scheme arises from the
(complete)monomial group of degree , containing
the matrices of order that have one nonzero element, equal
to , in each row and each column.

Example 2 (continued):Let be thesymmetric group
of degree , containing the permutations on coordinates.
It acts in a natural way on the set of binary -tuples of
weight The corresponding structure is the Johnson
scheme

The notion of an association scheme can be gener-
alized, by omitting the commutativity requirement
A further extension is obtained by relaxing the “homogeneity
condition” a) in Definition 1. In general, it is only required
that the diagonal relation be a union of
some relations belonging to the set Thus we arrive at a
combinatorial structure called acoherent configuration
[59] (equivalent to acellular ring [50]). The group theoretic
counterpart of this general structure is obtained by leaving out
the transitivity assumption.

Certain infinite metric spaces occur as analogs of association
schemes that are important in coding theoretic applications.
We call distance-transitive(or two-point homogeneous [130])
a connected compact metric spacewith the distance function

and the isometry group , if for any
the equality implies the existence of
some such that and As an
example of a distance-transitive space we mention the unit
Euclidean sphere in (considered in more detail in
Section IV-E) whose isometry group consists of all orthogonal
matrices of order A distance-transitive space has many
strong properties [9], [53], [65], [120], [129]. The isometry
group of acts transitively on and hence there exists
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a uniquenormalized invariant measure and
for any measurable and If

is the diameterof , then for any (real)
and (cf. (2))
depends only on and For any invariant function

on (this means that for
any ) there exists a function on such that

Continuous invariant functions
on form a commutative algebra with respect to the
operations of addition andconvolution

In the linear space of continuous functions on with
the inner product

(26)

(cf. (9)), the unitary representation of defined as
follows: , decomposes into a countable
direct sum of pairwise inequivalent irreducible representations

acting on (mutually orthogonal) subspaces
of continuous functions. Each subspace has a

finite dimension consists of constants and
and is invariant (i.e., if , then for any

). The invariant functions (cf. (10))

(27)

where is an arbitrary orthonormal
(with respect to (26)) basis of , form a basis of consisting
of irreducible idempotents, which are mutually orthogonal

The corresponding “-functions” on such that
are real and satisfy the following

orthogonality and normalization conditions:

(28)

where is the measure on such that
(this does not depend on ). For any

element of , the series

with

converges to on Moreover, for these functions
an analog of Theorem 2 is valid and

the linearization factors are nonnegative. All (infinite)
compact distance transitive spaces have been classified in
[130] as the unit Euclidean spheres , the projective spaces
in dimensions over and quaternions
and the Cayley projective plane.

Note that the definition and all properties of distance-
transitive spaces are also correct for finite metric spaces, and
any finite distance-transitive metric space is an -class
symmetric association scheme with
and equal to the number of nonzero values of
In particular, the Hamming and Jonhson spaces are distance-
transitive. The fact that in the case of finite spaces

(compare (10) with (27)) is explained by the
distinctness between the product and convolution of matrices.

III. CODES AND DESIGNS

In coding theory and related subjects, an association scheme
(such as the Hamming scheme) should mainly be viewed as
a “structured space” in which the objects of interest (such as
codes, or designs) are living.

Let be a nonempty subset of the point set of an
association scheme Then will be called a code
in (In certain contexts, is preferably called a
design.) We now introduce the important concept of the inner
distribution of a code.

A. Inner Distribution

Definition 4: The inner distributionof a code in an -
class association scheme is the rational -tuple

where counts the pairs of points in
that belong to the relation Formally

for (29)

A code in the Hamming scheme is nothing but a
-ary code of length The inner distribution of is its

(Hamming) distance distribution. In effect, counts the
pairs of codewords with

Coding theorists are often interested in a code having a
specified set of admissible distances (in particular: a specified
minimum distance). In the general framework of association
schemes, this notion extends as follows.

Definition 5: Let be a subset of A code in
is called a -code if all pairs of distinct points in belong
to the admissible relation In terms of the inner
distribution, this becomes for each

Consider, for a while, the familiar situation where is a
linear code of length over the field (in the Hamming
scheme). Then the distance distribution ofreduces to its
weight distribution: counts the codewords with

From the linear code we can define its
orthogonal code(often called the dual code), that is,

for all

The weight distributions of and are related by the
MacWilliams identities[86], [87]. These are well-defined linear
relations involving the Krawtchouk polynomials (16). (We
shall go back to this subject in Section V.)

As a result, the “Krawtchouk–MacWilliams transform” of
the distance (or weight) distribution of a linear code
yields nonnegative real numbers, which can be interpreted as
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the components of the distance distribution of the
orthogonal code It turns out that this nonnegativity result
can be extended toarbitrary codes(in a Hamming scheme),
even though the orthogonal code notion is lost. Moreover, as
shown below, the result extends to codes inany association
scheme.

Definition 6: Let denote the -numbers of an -class
association scheme (with ). The -transform of a
complex -tuple is the complex -tuple

given by

for (30)

Note that this definition of the -transform in fact depends
on the choice of an ordering of the functions(or the matrices

), From Theorem 1 and (15) it follows that

(31)

Moreover (see (14)), for any

(32)

(33)

Theorem 3 (Generalized MacWilliams Inequalities [37]):
Let be the inner distribution of a code in ,
and let be its -transform. Then (i.e.,

) for each
The proof is quite easy since, in view of (13) and (10),

(34)

This also shows that is an averaging parameter of
a code In this connection note that for all

The -transform of the inner distribution of a code will
sometimes be referred to as the “dual (inner) distribution” of

Definition 7: Let be a subset of A code in
is called a -designif the -transform of its inner distribution
satisfies for each

Example 1 (continued):In , an -design is an
orthogonal array of strength (see [37] and [40]). This means
that the restriction of to any set of coordinates shows all
-tuples of alphabet symbols appearing the same number of

times [98]. Orthogonal arrays are closely related to “resilient
functions” and to “correlation-immune functions” which occur
in some cryptography applications [16], [33], [79], [113],
[122].

Example 2 (continued):In , an -design is a
combinatorial -design (see [37]). This is a collection of
blocks of size , out of a point set of size , such that all
-subsets of the -set are contained in the same number of

blocks [15], [62]. There is a close connection between coding
theory and design theory [3], [5]. It is interesting to point
out that a three-parameter class of Hahn polynomials (larger
than the “spherical class” involved in the-numbers) plays a
significant role in the theory of combinatorial-designs [133],
[134] and in an extension thereof [28].

B. The Linear Programming Method

Theorem 3 strongly suggests using linear programming
to find bounds on the size of a code characterized by
some linear constraints on its inner distribution In
particular, this method leads to upper bounds for-codes and
to lower bounds for -designs. We shall use the “nonstandard
forms” of the linear programming problem. For simplicity
we assume, in this subsection, that is a symmetric
association scheme, which implies that the- and -numbers
are real. For the problems that we are considering here, this
entails no loss of generality. While simultaneously considering
-functions and -functions it is convenient to use the letter

instead of either or , and use for the other one. For any
with the expansion we put

if

For any , we say that has the property
if

for

for

and has the property if

for

for

Let

where the minimum is taken over all functions
with the property and

where the maximum is taken over all functions
with the property It should be noted that both
extremum problems are linear programming problems, because
without loss of generality one can assume that and
then

The following two results are obtained, respectively, with
the help of (32) and (33) with and One
also makes use of

(by Theorem 3), if
when is a -code, and if

when is a -design.
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Theorem 4 [37]: If is a -code and has the
property , then

(35)

If is a -design and has the property ,
then

(36)

In each case, equality holds if and only if

Theorem 5 [37]: If is a -code and has
the property , then

(37)

If is a -design and has the property ,
then

(38)

In each case, equality holds if and only if

The necessary and sufficient conditions for these bounds to
be sharp have many useful consequences, a nice example being
the (generalized)Lloyd conditionfor perfect codes [17], [37],
[70], [84], [101], [117]. Note that Theorems 4 and 5 imply that
the functions for which or
holds areoptimal solutions of the corresponding extremum
problems.

Coding theorists are especially interested in applying The-
orems 4 and 5 to the class of codes with aspecified minimum
distance , which are -codes in and It was shown
in [35] that the classical “elementary bounds” such as the
Hamming, Plotkin, and Singleton bounds occur as simple
cases of these theorems. In the next section we give bounds
which are obtained with the help ofoptimal solutions of some
extremum problems for systems of orthogonal polynomials.
Combinatorial proofs of some of these bounds are unknown.
It should be noted that the bounds of Theorems 4 and 5 can
be improved by the same linear programming method if one
knows an additional information about and

(not only their nonnegativity). It was successfully used in
the analysis of concrete codes (see [14], [27], and [88]).

In conclusion of this subsection we verify that there exists a
duality in bounding the sizes of -codes and -designs [78],
[80]. For any and (which is again either or
), we define an -dual function to as follows:

(39)

Using Theorem 1 and (15) one can show that
and hence ,

and has the property or if and only if
has, respectively, the property or In particular,
this implies the equivalence of the bounds (35) and (37) and
also (36) and (38).

Theorem 6 [80]: For any symmetric association scheme
and any

C. Outer Distribution and Fundamental Parameters of Codes

The inner distribution of a code is concerned with the
mutual relations or “distances” between the code points which
are values of the function We shall omit the quotes
when, for a symmetric association scheme
satisfies the triangle inequality and hence is a distance function.
Let denote the set of distinct values of the function

when Note that

and define

For simplicity, we shall consider codes in an -class
association scheme , such that Then
we can state that both and are not empty. Define
the following fundamental parameters of a code[36]:

• the minimum“distance” ;
• the (minimum) dual “distance” ;
• the degree ;
• the dual degree .

Together with we will also consider

• the (maximum) strength

Moreover, we consider two auxiliary parameters

if
otherwise,

and
if
otherwise.

For given integers and (with and
), a code is called a -codeif and a -design

if These notions are special cases of a-code and
a -design, respectively, for and The
examples of -designs in the Hamming and Johnson schemes
are examined in Section III-A above. The given definitions
clearly show the dual character of the notions of-codes and

-designs. Let denote the maximum size of a
-code in and let denote the minimum size

of a -design in A -code in is called
maximalif and a -design in
is calledminimal if

Now we introduce a definition that involves the relations
(“distances”) between the code and the whole ambient
set

Definition 8: The outer distributionof a code in an -
class association scheme is the matrix

whose entry equals

Some fundamental properties of a codeare defined in
terms of the rows of its
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outer distribution A code is calleddistance-invariantif
for any and completely distance-

regular if for any such that
where

When is a linear code over (in the Hamming scheme),
the rows of the outer distribution are the weight
distributions of the coset codes

It is easily seen that can be expressed linearly
in terms of the inner distribution of Let us give the
“ -transform version” of this expression. Consider the-
transform of each row of the outer distribution This
produces the matrix , with

Theorem 7 [37]: The -transform of the outer distri-
bution is related to the -transform of the inner
distribution by

As an immediate consequence, therank of is equal to
Furthermore, we obtain

whence for any This can also
be deduced from (34) as follows: If then

(40)

Some interesting problems in classical coding theory are
concerned with thecovering radius of a code (in the
Hamming scheme) (see [6], [31], [34], and [64]). By definition,

where

(Thus for a linear code, is the maximum weight of coset
leaders.) This definition is extended to any association scheme

if one replaces by The covering
radius can be found from the outer distribution of ,
since is the smallest such that

Notice that generally cannot be determined from
the inner (distance) distribution of ; however, some upper
bounds on can be obtained from these data [37], [51],
[118], [127]. (See also Sections IV-C and IV-D below.)

IV. POLYNOMIAL SCHEMES

A. Orthogonal Polynomials

In the examples of the Hamming and Johnson schemes (and
in several other interesting cases), the-numbers and the
-numbers are representable by polynomials of degree

and , respectively, in an “appropriate variable” (see Section
II-B). This leads us to investigate the class of association
schemes that enjoy either of these “polynomial properties”
(or both of them).

Definition 9:
i) A symmetric -class association scheme is -

polynomial, with respect to a function , if
there exist real polynomials of degree
such that for any

ii) A symmetric -class association scheme is -
polynomial, with respect to a function , if there
exist real polynomials of degree
such that for any

It can be proved that these functions and must be
linear functions of the first - and -functions and
(respectively), which take different values and
for different such that and

We will use the following functions
and :

(41)

Then and
When the function or is decreasing on we will
extend it to a continuous decreasing function on (usually
the latter is defined by the same formula). In this case,
the corresponding function given by (41) is a decreasing
continuous mapping from onto and it is called
standard.

It follows directly from Theorem 1 and (15) that
and are systems

of orthogonal polynomialswith the following orthogonality
conditions:

(42)

(43)

and the properties:

(44)

These orthogonal systems and are uniquely determined
by three-term recurrence relations[49] of the form
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where

Definition 9 depends on the ordering of the relationsand
of the idempotents , respectively. For this reason, a given
association scheme may possess more than one-polynomial
structure and more than one-polynomial structure (see [10]).

The algebraic notion of a -polynomial scheme is equiv-
alent [37] to the combinatorial notion of a distance-regular
graph, defined as follows. Let be a simple connected
finite graph of diameter For , define as the
set of pairs such that and are at distance
apart in , and let If is
an association scheme, then is said to bedistance-
regular [26]. Thus if is a -polynomial scheme, then

(see (1)) is a distance function. Note that a symmetric
association scheme with a distance function need
not be -polynomial. (An example is provided by the “ordered
Hamming scheme” [89].) On the other hand, the algebraic
notion of a -polynomial scheme has no simple combinatorial
interpretation, except in some important special cases where

can be embedded in a certain “lattice-type structure”
[38], [39], [94]. Nevertheless, there exist some useful general
characterizations of -polynomial schemes [54], [126]. There
is an elementary criterion for the -polynomial property in
terms of the intersection numbers, namely, and

for This characterizes the “distance
structure” in a clear manner. Similarly, a criterion for the

-polynomial property is and for

Example 1 (continued):For the Hamming scheme ,
(17) holds and

Hence, is - and -polynomial with respect to the
standard function , systems and coincide
and consist of the polynomials

Example 2 (continued):For the Johnson scheme (17)
holds and

Hence, is -polynomial with respect to the standard
function

and -polynomial with respect to the standard function
Systems and are defined by means

of and

The number of independent parameters of an-class -
polynomial or -polynomial scheme is equal to
In contrast with this observation, Leonard has proved that
all parameters of a - and -polynomial scheme can be

determined from onlyfive independent numbers [72]. The
same author [71] has shown that the polynomials and

relative to - and -polynomial schemes belong to
a well-defined five-parameter class of orthogonal polynomi-
als of the generalized hypergeometric type [114], known
as the Askey–Wilson polynomials[2]. His result produces
closed-form expressions for the-numbers and the-numbers.
Furthermore, it characterizes the Askey–Wilson polynomials
as those orthogonal polynomials having “duals.”

For a code in a -polynomial scheme, a polynomial is
called anannihilator for if for all
An annihilator of minimal degree (i.e., degree ) is
calledminimaland denoted by if
For a code in a -polynomial scheme, a polynomial
is called adual annihilator for if for all

A dual annihilator of minimal degree (i.e.,
degree ) is called dual minimal and denoted by
if In particular, if for and

or

(45)

then and For any nonempty
and any denote by the polynomial of degree

uniquely defined by the conditions:
for any Any function on can be represented

by the interpolation polynomial of degree
In particular, for any we have

In the case of a -polynomial association scheme
(where is either or ), we can rephrase the linear
programming bounds of Theorems 4 and 5 in terms of ex-
tremum problems for the systemof orthogonal polynomials.
Denote by the set of real polynomials of degree at
most in For any , let be the
coefficients of the (unique) expansion ofover the system

, i.e., Put if
Note that gives a one-to-one

mapping of onto with and
for any (see (14) and Definition 9). We

restrict our attention to the case of-codes and -designs
(i.e., codes with dual “distance”or more), which corresponds
to the case of -codes and -designs for We
say that has theproperty if

has the property (respectively,
). Let where the minimum is

taken over all polynomials with the property
Similarly, let where the maximum
is taken over all polynomials with the property

Since for , we have

(46)

and we can use Theorems 4–6 to estimate the size of-codes
and -designs with the help of the above extremum
problems for the system

Authorized licensed use limited to: Herzeliya IDC. Downloaded on January 20,2024 at 06:49:20 UTC from IEEE Xplore.  Restrictions apply. 



2488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

Without going into any detail, let us finally point out that
the classical examples of- and -polynomial schemes are
induced by some classicalpermutation groups(see Section II-
D). Extensive research work has been devoted, in this context,
to the subject of “orthogonal polynomials and permutation
groups” [48], [119].

B. Adjacent Systems of Orthogonal Polynomials
and Two Extremum Problems

Some important estimates on fundamental parameters of
codes are expressed in terms of values connected with systems
of orthogonal polynomials which areadjacentto the systems

and Consider two functions and on We assume
that the first function (change of variable) takes the values

and maps into the interval ,
and the second (weight) function has the properties
and We call the change of variablestandard
if it can be represented as a continuous decreasing function
on the whole interval It is known [49], [121] that the
orthogonality conditions

(47)

uniquely define a system of polynomials
of degree with some positive values We denote

by and the functions and for the system In
particular, for the systems and we have (see (42) and (43))

We assume that satisfies theKrein condition: for any
there exist nonnegative real numbers such

that

By (23) and (24) this is fulfilled for the systemsand For
the system and any we define thekernel function

For any we consider a weight function on
such that

(48)

where the constant is chosen so that

The initial change of variable and the new weight function
uniquely define a system

of polynomials of degree by means of the following
conditions:

(49)

(The system consists of polynomials since
weights become zero.) We put

Let be the largest zero of the polynomial If
is standard we can uniquely define the numbers by

We will omit the indices in the
notations when

Example 1 (continued):Let be the Krawtchouk
polynomial of degree defined by (16) and let be its
smallest zero. For the Hamming scheme

where

and , and hence

(50)

In particular,

Example 2 (continued):Let and be the
polynomials of degree defined, respectively, by (18) and
(19), and let and be their smallest zeros. For
the Johnson scheme

and is proportional to Hence

and

Now we consider two extremum problems for the system
of orthogonal polynomials under consideration. For any

, the -problemconsists in finding

where the maximum is taken over all polynomials
such that and for A
polynomial having these properties for which

is called anoptimal solutionof the
-problem. These properties are in general stronger than
since they include nonnegativity of on the whole

interval (not only at points and
a restriction on its degree. This implies that for any-
polynomial ( is either or ) association scheme

(51)

From now on we assume that and denote arbitrary
numbers such that and
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Theorem 8 [103]: For any the
polynomial

of degree is the unique (up to a constant factor) optimal
solution of the -problem and

One can show that is a positive-valued increasing
function in and admits another expression

For odd and the polynomials

were first used in 1973 in [37] to obtain a lower bound on the
size of -designs (see Theorem 19 below). In the general
case Theorem 8 was applied to this end in [47].

Example 1 (continued):For the Hamming scheme and

(52)

Example 2 (continued):For the Johnson scheme and

(53)

(54)

Now we formulate the second extremum problem for the
system with a standard function It is known [103] that
the largest zeros of the polynomials satisfy
the following inequalities:

where it is assumed that and
This means that the half-open interval

is partitioned into the half-open intervals and
Enumerate in succession all

these half-open intervals from the left to the right by positive
integers. For any real number denote by

the numberof the (unique) half-open interval containing
Let when or

and let if and if

Then it is clear that
For any number , the -problem
consists in finding

where the minimum is taken over all polynomials
such that and for A
polynomial having these properties for which

is called anoptimal solutionof the
-problem. Note that for these properties as

compared to say nothing about nonnegativity of
for , include a stronger condition than

for , and introduce a restriction to the degree
of the polynomials. Note that this restriction means that,
in the -problem, polynomials whose degree does not
exceed the number of the half-open interval containing
are considered. This also holds in the case of the -
problem since is partitioned into the half-open intervals

, and is the number of the half-open
interval containing

Theorem 9 [77], [81]: For any real number
let and Then the polynomial

(55)

of degree is an optimal solution of the
-problem. The function is equal to

positive-valued and continuous, grows with, and takes the
following values at the left ends of these half-open intervals:

(56)

We give some additional facts on the polynomials
For the polynomial is the unique (up to a
constant factor) optimal solution of the -problem. For

we have and the polynomial
has factor For we have

and is also divisible by In both
cases the polynomial is an optimal
polynomial for the -problem as well. Moreover, for

the polynomial is proportional
to the optimal solution of the -
problem. These facts and Theorems 8 and 9 follow from the
following main theorem which (as we shall see below) also
determines the inner distribution of optimal codes and designs.

Theorem 10 [77], [81]: For any the
polynomial

(57)

with and has simple zeros

where and with equality holding if and
only if or and Moreover, for any
polynomial of degree at most the
following equality holds:

(58)
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where for

are positive, and in the case

with equality holding if and only if (here is omitted
in the notation ).

Example 1 (continued):In the case of the Hamming
scheme for any there exist and

such that

Then for can be
expressed by the following formula:

where In particular, when the number belongs
to the half-open intervals

this, respectively, gives the values

which are obtained with the help of the optimal polynomials
of the first, second, and third degree.

Example 2 (continued):In the case of the Johnson scheme
, when belongs to the half-open intervals

the function for , respectively,
equals the expression given at the bottom of this page. This
is obtained with the help of the optimal polynomial
for the -problem of the first, second, and third degree
(see [76]).

In order to prove that for the optimal polynomial
for the -problem has the property and

hence the inequality holds, one must
check that all coefficients of its expansion over system

are nonnegative. Note that in the case by Theorem 2
the latter means that the symmetric matrix
for -polynomial association scheme is nonnegative
definite. Now it is known [77], [81] that all coefficients

are positive when (or
has odd degree ), in particular, for ,
and also when Moreover, the same is
true for all if the system satisfies thestrengthened
Krein condition: for any the coefficients of
the expansion of over
the system are positive. It is known that the system
satisfies the strengthened Krein condition fordecomposable -
polynomial schemes [77]. The class of decomposable schemes
contains some known infinite families of- and -polynomial
association schemes, in particular, and It seems to

be true that all coefficients are also
positive when belongs to the open interval
Unfortunately, this question is still open for Thus
for any system under consideration

(59)

if (see (56)), and for any

(60)

if satisfies the strengthened Krein condition.
The known earlier bounds for a-code can be described

in terms of polynomials which have the -property
for
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for and hence imply
In particular, the bounds due to Blichfeldt [19], Rankin [97],
Plotkin and Johnson (see [88]) are in fact based on the
polynomial with which
provides The Sidelnikov results [110],
[111] are obtained with the help of polynomials

for a suitable choice of an integer In [90] (and
later in [65] for the Euclidean sphere) the polynomials

(61)

were used, where the integer is defined by
The polynomials (55) were found with the help of

the Lagrange method and presented in [73]. Some extremum
properties of these polynomials were found in [112] and they
were essentially used to prove the optimality of (55) for the

-problem (see Theorems 10 and 9).
The solutions of the - and -problems can also

be applied to codes and designs in the Cartesian productof
copies of a -polynomial association scheme with

the distance or on
In particular, for the case of the distance
on , this allows one to estimate theShannon capacity[106]

of a graph (see [85], [91],
[104], and also [79]).

In the remainder of this section, considering a codein an
-class - and/or -polynomial scheme we shall assume for

simplicity that

C. Codes and Designs in-Polynomial Schemes

Throughout this subsection, we consider an-class -
polynomial scheme In this case (see (1)) is
a distance function and can be considered as a metric
space with the metric It follows that
for any code the metric spheres(balls)

of radius centered at the code points do not intersect
when is equal to thepacking radius
and cover when is equal to the covering radius
This gives the followingsphere-packing and sphere-covering
boundsfor any code in :

(62)

Thus we have A code for which
is called perfect. A code is perfect if and only if

or, equivalently, the spheres
form a partition of

From the existence of polynomials which are dual annihila-
tors for codes we can derive some inequalities between their
fundamental parameters.

Theorem 11:For any code in an -class -polynomial
scheme

1)
2) equality implies

where

3) If , then is distance-invariant and

for any and
4) If is standard and , then

with equality if and only if and
is dual-minimal for

A simple proof of Theorem 11 is based on the fact that for
any , (33) with and
gives

(63)

Therefore, if is a dual annihilator for such that
and , then The polynomials

and

(see (45)) have these properties and give rise to the first and
second statements. The third statement is obtained if one uses
the polynomial of degree in (63) and
takes (31) into account. To prove the last statement note that
the left-hand side of (63) equals zero for

since (see (48) and (49) for ) and
Moreover, by the second statement

and if
We can apply similar arguments to the rows of the outer

distribution which has rank by Theorem 7.
Considering in (33) and
with a dual annihilator for we find that

(64)

In particular, for the dual minimal polynomial we
have

and for any integer and

we have

with Since in both cases depends only on
, this allows one to compute the outer distribution of a

code from a “small set of data.”
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Theorem 12 [37]: Each column of the outer distribution
of is a linear combination of the all-

one vector and the first columns the
coefficients of which are determined by the inner distribution.

Thus the first entries of any row
of the outer distribution of a code are not all equal to zero
and they uniquely determine the remaining entries of the row.
This has some interesting consequences presented in [37]. In
particular

and, hence, for any

(65)

Moreover, if , then the first entries
of any row are all zero except for
when For , the entry
is uniquely determined from (64). In particular, this gives

when
(see Example 1 below). Therefore, is completely regular if

Note that from (33) it also follows that for any
there exists such that

This fact was used in [69], [83], and [118] for obtaining
asymptotic upper bounds for the covering radius of linear
codes when the dual distance grows linearly
with This approach is based on the inequalities

which are satisfied by all linear codes ; it makes use
of the Chebyshev polynomials, characterized by the fact that
they exhibit the smallest deviation from zero.

We now give the linear programming bounds which follow
from solutions of the above extremum problems for the system

(see (46), (51), (59), and (60)).

Theorem 13:Let be any code in a -polynomial scheme
Then

(66)

with equality if and only if and
is a dual minimal polynomial for where

and
In particular, for odd Theorem 13 gives the

sphere-packing bound (left-hand side of (62)) and implies that
is dual minimal for any perfect code

The latter is the (generalized)Lloyd theoremfor perfect codes
[17], [37].

Theorem 14 [80], [81]: Let be a code in a -polynomial
scheme with the standard function If ,
then

(67)

with equality if and only if and
is a dual minimal polynomial for where

and
Thus the bounds (66) and (67) can be attained only simulta-

neously and in this case is a maximal -code for
and a minimal -design for Note that (65) gives
a lower bound on the size of a code with a given number of
dual “distances.” Probably a stronger inequality

(68)

holds which (together with (66)) would imply statement 2)
of Theorem 11. Then all bounds (66)–(68) can be attained
only simultaneously. In any case, this is true for perfect codes
(odd ). The inequality (68) was proved for the Hamming
scheme in [78] but it is an open problem in the general case.

The following statement extends Theorem 14 from the case
(see (56)) to the general case under the

additional restriction that satisfies the strengthened Krein
condition. Therefore, we do not repeat the necessary and
sufficient conditions for this special case.

Theorem 15 [80], [81]: Let be a -polynomial scheme
with standard and assume that satisfies the strengthened
Krein condition. Then for any code

(69)

with equality in the case if and only if
and the polynomial (57) with

is dual minimal for where

Note that codes for which the bounds of Theorems
13–15 are attained belong to the class of codes satisfying

(cf. statement 2) of Theorem 11).
There exists the following characterization of codes in this
class.

Theorem 16 [77]: Let be a code in a -polynomial
scheme with the standard function such that

and hence
Then if and only if

and
is dual minimal for and if and only if

and the
polynomial (57) with is dual minimal for

Note that for the class of codesin a -polynomial scheme
defined by the condition the

only parameter (or ) uniquely determines all funda-
mental parameters, the inner distribution, its-transform (or
“dual distribution”), and the outer distribution of the code
Indeed, by Theorem 16 we know the dual minimal polynomial

and hence the set of integers
which are dual distances, From Theorem
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10 and statement 3) of Theorem 11 it follows (by use of the
polynomial in (58)) that for any code in the
class

(70)

where The inner
distribution of and, in particular, the parameters
can be found with the help of (31). Moreover, all codes
in this class are distance-invariant and completely distance-
regular. This allows us to compute the outer distribution of
with the help of (64) as was explained above. Note that from
Theorem 16 it follows that the condition on a dual minimal
polynomial in Theorems 13–15 is a consequence of the first
condition and can be omitted.

Example 1 (continued):Apply these results to a code in
the Hamming scheme for which or
Since

and

(see (50) and (52)), we have or ,
respectively, by (66) and (67). Consider a codefor which
either of these bounds is attained. Any suchis a maximal
-code and a minimal -design, and must have the following

properties: and

Since
Using statement 3) of Theorem 11 (or (70)) and (31) we
can find that

and
for all (This means that must beformally self-
dual.) Finally, and hence is completely
distance-regular. By use of the method explained above, we
can mechanically compute the outer distributionof the code

The following table gives the entries for ,
and for all

dist

In fact, a code having the above properties exists and is
unique (within equivalence); it is theextended binary Golay
code (see [88]). Thus our table gives the
weight distribution of all cosetsof

Example 2 (continued):Apply (66) and (67) to a code
in the Johnson scheme for which or
Since and

(see (53)), we have or , respectively.
Consider a code for which either of these bounds is
attained. It must have the following properties:

and

Because

Using statement 3) of Theorem 11 and
(31) we can find that

and
Again in this case is completely distance-

regular, since , and one can compute the
outer distribution of the code In fact, a code having
the above properties exists and is unique; it is the “octade
code” formed by all vectors of Hamming weight in the
extended Golay code (see [88]).

More sophisticated applications can be found in [6], [36],
[37], and [76].

D. Codes and Designs in -Polynomial Schemes

Let us consider codes in an-class -polynomial scheme
Using (32) with where are some

annihilators for a code one can obtain the following dual
analog of Theorem 11.

Theorem 17:For any code in an -class -polynomial
scheme

1)
2) equality implies

where

3) If , then is distance-invariant and

for any and
4) If is standard and , then

(71)

with equality if and only if and
is minimal for
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Many results concerning codesin -polynomial schemes
are based on the existence of the representation

(72)

(see (10) and (13)). In particular, let us emphasize the follow-
ing important “dual” analog of (65).

Theorem 18 (The Absolute Bound [37]):For any code in
a -polynomial scheme

(73)

The proof of Theorem 18 is based on the fact that the
functions belong to the space
generated by the functions
equal to when and hence are linearly independent
functions in

In fact, the fundamental parameters of a code are
determined from the sequence and
its -transform (see Section III-C). Analogously, for any

, we can consider the sequence
and define the corresponding parameters; in particular,

Note that, by (40),
for any , and, similarly to statement 2) of

Theorem 17, for any
Therefore, if we assume that and ,
then For the polynomial

of degree we have (see (48) and (49) for
), and the use of and

in (32) shows that

under our assumption. If is standard, then
if with equality in at most points

while

This implies that for any code in a -polynomial scheme
with standard such that

(74)

with equality if and only if there exists a point such
that is a polynomial of minimal degree which
equals zero at for each

The inequality (74) for the Hamming scheme is due to
Tietäväinen [127]. For the general case it was given together
with the necessary and sufficient condition for its attain-
ability in [51]. Note that (71) and (74) give the following
upper bounds on the minimum distance and covering radius
of a -design :

Let be the set consisting of the nonempty
relations (those with ). Then
is called therestriction of to It can be shown
that if then is an -
class -polynomial scheme [37]. This theorem is a kind of
“dual” of the result mentioned in Section IV-C about com-
pletely distance-regular codes. The intersection numbers of
this scheme can be computed with the help of the polynomials

and
Next, we give linear programming bounds which follow

from solutions of the above extremum problems for the system
(see (46), (51), (59), and (60)). Recall that the repre-

sentation (72) was used to prove that for the decomposable
-polynomial schemes (in particular, for the Hamming and

Johnson schemes) the system satisfies the strengthened
Krein condition [77].

Theorem 19 [37], [47]: For any code in a -polynomial
scheme

(75)

with equality if and only if and
is a minimal polynomial for where

and
The well-known Rao bound [98] for -designs (or-

thogonal arrays) in the Hamming scheme and the Ray-
Chaudhuri–Wilson bound [99] for-designs (block designs) in
the Johnson scheme are special cases of (75) for these schemes
(see (52) and (54)). A design which satisfies equality in (75)
is called atight -designwhere The subject of
tight -designs in the Johnson scheme has been introduced by
Ray-Chaudhuri and Wilson [99] and has been investigated by
several authors (see especially [7], [134], and the references
therein). In particular, the polynomial is
minimal for any tight -design. This is (a generalized version
of) the Ray-Chaudhuri–Wilson theoremfor tight designs [99];
it is a “dual” of the Lloyd theorem for perfect codes [37],
[101].

Theorem 20 [73], [77]: Let be a code in a -polynomial
scheme with the standard function If

then

(76)

with equality if and only if and
is a minimal polynomial for where

and
Analogously, the bounds (75) and (76) can be attained only

simultaneously and in this case is a minimal -design for
and a maximal -code for Note that

the absolute bound (73) gives an upper bound on the size of a
code with a given number of “distances.” Probably a stronger
inequality

(77)

holds which (together with (75)) would imply statement 2) of
Theorem 17. Then all bounds (75)–(77) can be attained only
simultaneously. In any case, this is true for tight-designs with
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even (odd ). The inequality (77) was proved in [77] for
all decomposable -polynomial schemes (in particular, for the
Hamming and Johnson schemes), but it is an open problem in
the general case.

The following statement extends Theorem 20 from the case
(see (56)) to the general case under the

additional restriction that satisfies the strengthened Krein
condition. Therefore, we do not repeat the necessary and
sufficient conditions for this special case.

Theorem 21 [73], [77]: Let be a -polynomial
scheme with standard and assume that satisfies the
strengthened Krein condition. Then for any codein

(78)

with equality in the case if and only
if and the polynomial (57) with

is minimal for where

For the Hamming and Johnson schemes the bound (78)
in the first interval when coincides
with the well-known Plotkin and Johnson bounds, respectively
(see [88] and the calculation of in Section IV-B).
For , (78) improves upon these bounds. (We
remind that (78) is true in the second interval and in all
odd intervals without the restriction of the strengthened Krein
condition.)

Note that codes for which the bounds of Theorems
19–21 are attained belong to the class of codes satisfying

(cf. statement 2) of Theorem 17) and
forming -class -polynomial schemes. There exists the
following characterization of codes in this class.

Theorem 22 [77]: Let be a code in a -polynomial
scheme with the standard function such that

and hence

Then if and only if
and

is a minimal polynomial for ; and if and only
if and the
polynomial (57) with is minimal for

For the class of codes in a -polynomial scheme
defined by the condition , the only
parameter (or ) uniquely determines all fundamental
parameters, the inner and dual distributions of the code,
and also the intersection numbers of the-polynomial scheme
formed by Indeed, by Theorem 22 we know the minimal
polynomial and hence the set
of integers which are “distances,” From
Theorem 10 and statement 3) of Theorem 17 it follows (by
use of the polynomial in (58)) that for any code

in the class

where The dual
distribution of is computed by (30). Codes in the class are

distance-invariant and form -class -polynomial schemes
whose intersection numbers are determined with the help of
the polynomials and (see [37, Theorem 5.25]
or [81, Theorem 3.21]). Note that from Theorem 22 it follows
that the condition on a minimal polynomial in Theorems 19–21
is a consequence of the first condition and can be omitted.

E. Bounds for Spherical Codes and Designs

The results of Section IV-D are applicable to infinite
distance-transitive spaces (see Section II-D). The unit sphere

is a distance-transitive space with the Euclidean distance

and the isometry group consisting of all orthogonal
matrices of order Any finite set (called a
spherical code) is characterized by the finite set of
distinct nonzero values of when It allows
us to define for any spherical code the minimum distance

and thedegree , and also
the parameter which equals if the diameter of
belongs to , and equals zero otherwise. We can also
measure the distance between by the angle

where

and denote by the minimum angular distancebetween
distinct points of It is clear that
The normalized invariant measureon is the normalized
surface area of Let be the surface area of

and let be the surface area of It
is well known that and

(79)

where and is the gamma
function. The inner and outer distributions of a spherical code

are given by the values

and, for any

Note that and , considered as functions of
, differ from zero only at a finite set of points

For any function which has this property (in particular, for
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and ) we can define its -transform as the
infinite sequence where

As in the case of association schemes we can define (see
Section III-C) the set , the dual distance of
and its strength Spherical -designs
(i.e., ) were introduced in [45], in connection with an
approximation formula for the evaluation of multidimensional
integrals over of the following form:

(80)

The code is a -designif and only if the approx-
imation formula (80) becomes equality for all functions
which are polynomials in coordinates of

of degree at most Thus is the
minimum number of nodes in the approximation formula under
consideration.

Now we verify that is “ -polynomial” with respect
to the standard change of variable (this
means that is a decreasing continuous function such that

). Indeed, from (28) and (79) it follows
that the orthogonality and normalization conditions

(81)
uniquely define polynomials of degree such that

and hence

In the case of the subspace consists of all homoge-
neous harmonic polynomials in of
degree and has the dimension

Thus

where

are the Jacobi polynomialsnormalized by
(The Jacobi polynomials with are called
the Gegenbauer polynomials.) All results of Section IV-D are
valid for spherical codes except for statement 1) of Theorem 17
whose proof uses the finiteness of association schemes. (The
absolute bound for was proved in [45] in the strong form
(77).) In particular, the - and -problems and their
solutions are valid for countable systems(compare (47) with
(81)) and give rise to the following two results.

Theorem 23 (The DGS Bound [45]):For a code
let Then

(82)

with equality if and only if
Note that if is the largest zero of and is

the largest zero of , then
and that satisfies the strengthened Krein condition.

Theorem 24 [73], [74]: For a code , let
and Then

does not exceed

(83)

and, in particular, if , then

(84)

The bound (83) is attained if and only if

The class of spherical codes for which the bounds of
Theorems 23 and 24 are attained is described by Theorem 22;
these codes carry -polynomial subschemes. Many examples
can be found in [45], [74], and [77]. In particular, the tight-
design in containing 240 points and the tight -design in

containing 196 560 points are the maximal codes with the
angular distance 60; they allow one to determine thekissing
numbersin dimensions and [74], [96].

The following asymptotic bound follows from (84). How-
ever, it was obtained earlier with the help of the MRRW
polynomials (61).

Theorem 25 (The KL Bound [65]):For any fixed
and

It should be noted that Theorems 23 and 24 give the best
linear programming bounds in the class of polynomials of
restricted degree. The necessary and sufficient conditions for
optimality of for the -problem without this
restriction were found in [24] and [25], together with an
improvement of (83) in some range when these conditions
are not fulfilled. On the other hand, in [135] there was found
a continuous function having the properties for

and ; this yields
an improvement of the DGS bound (82) for-designs if is
sufficiency large.
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Theorem 26 [135]: For any spherical design

(85)

In a certain sense, the sphere-packing bound

and the bound (85) are analogs of the bounds (62) and (69)
for -polynomial schemes.

The projective spaces in dimensions over and
quaternions also are -polynomial; the
corresponding systems are systems of Jacobi polynomials
and satisfy the strengthened Krein condition. Elements of these
spaces can be considered as lines going through the origin. The
results of Section IV-D are applicable to codes and designs in
the projective spaces which were studied earlier in [44], [60],
[65], and [77]. The bounds for codes in the projective spaces
have been successfully used to estimate “crosscorrelation” of
codes [65], [75], [76], [109].

F. Universal Bounds for Codes and Designs in- and
-Polynomial Schemes—Asymptotic Results

In this subsection we consider a codein an -class -
and -polynomial scheme and tacitly suppose that the
functions and are standard. Of course, all results of
Sections IV-C and IV-D are applicable. We give three pairs of
universalbounds for codes and designs in such schemes. The
term “universal” reflects the fact that these bounds are valid
for all codes in all schemes under consideration.

First, for a - and -polynomial association scheme we
extend the duality in bounding the optimal sizes of-codes
and -designs to the polynomial case. For any
and (we use for either or , and use for the other
one), we define an -dual polynomial to as follows:

(cf. (39)). Analogously, using (42)–(44) one can show that

and hence

and has the property or if and only if
has the property or , respectively. In particular,
for any the following equalities hold [80]:

(86)

As an example, consider the polynomial defined by
(45) and note that for according to
the assumption that is standard. Using the orthogonality
condition and the property

(see (42)–(44)) one can check that the-dual of is the
polynomial and hence
has the properties and This shows that

and implies thefirst pair of universal bounds[81]

Each of these bounds is attained if and only if
In this case, is an annihilator and is

a dual annihilator for
For the Hamming scheme and the Johnson scheme,

the first pair of universal bounds takes the following forms:

(87)

(88)

respectively. These bounds for codes are called the Singleton
and Johnson bounds [88], and codes satisfying equality in (87)
or (88) are called MDS-codes and Steiner systems, respectively
[88], [15]. In particular, (87) is attained for the Reed–Solomon
codes and (88) is attained for the “octade” code (together with
the four other bounds (66), (67), (75), and (76)).

From the results of Sections IV-C and IV-D we deduce the
second pair of universal bounds[37]

(89)

with equality in the left- and right-hand side if and only if
and ,

respectively.
Finally, if the systems and satisfy the strengthened

Krein condition, the results of Sections IV-C and IV-D imply
the third pair of universal bounds[78], [81]

(90)

with equality (when and ) in the left- and
right-hand side if and only if and

, respectively.
The characterization of the codes for which the bounds in

(89) and (90) are attained is given by Theorems 16 and 22. A
list of the known codes in the Hamming and Johnson schemes
for which (90) is attained can be found in [77] and [78].

For finding asymptotic results the following special cases
of bounds (89) and (90) are useful:

if

if

(91)
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if

if

(92)

In particular, in the case of the Hamming scheme, if
and , then

where

(see [90] and [78]). Notice that is a decreasing continu-
ous function on which coincides with its inverse
function, that is, Therefore, if is fixed and

then the second bounds in (91) and (92) give rise to thefirst
form of the MRRW bound for codes[90]

(93)

and the following asymptotic bound for designs [78]:

(94)

where

is theShannon entropy. In the case of the Johnson scheme
if and where
and then

where, for any

is a decreasing continuous function which maps the interval
onto (see [90] and [81]). The inverse function

can be expressed in the following explicit form:

Therefore, if and where
and then the second bound

in (91) gives rise to the asymptotic bound [90]

(95)

where On the other hand, as was shown
in [81], if and , where

and then

and hence, for and , where
and , the second bound in (92) gives

rise to the asymptotic bound

In the typical situation the second bounds in (91) and (92)
(which follow from the third pair of universal bounds) are
better than the first ones when the parameteris sufficiently
large and become worse whenis small. In particular, this is
true for the bound (93) which for sufficiently smallis worse
than the Hamming asymptotic bound

This raises the problem of “smoothing” these bounds. A
similar problem of bounding theShannon reliability function
for probabilistic channels was considered in [108] where the
straight-line boundwas found. Theprinciple of the multiple
packing(applicable to the translation schemes, see Section V)
gives the Bassalygo–Elias inequality [12]

(96)

where , and the straight-line bound for [69]

where A consequence of (95) and (96) for

is thesecond form of the MRRW bound for codes[90]

where and is defined above.
This becomes better than (95) with when

The argument that leads to (96) does not apply to the
minimal design problem. However, a similar result is valid in
terms of the linear programming bounds. Rodemich (see [100],
[42]) used the fact that any nonnegative-definite function

on is nonnegative-definite on (subset) as
well and proved the following analog of (96) for objective
functions of linear programming bounds:

(97)

Combination of (97) with (86) for and
gives the following results [80]:

(98)

(99)
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In particular, (99) and (95) (considered as a bound on
for

give the following asymptotic bound [80]:

(100)

where
The essential difficulty in extending the second form of the

MRRW bound to the case is caused by the fact that the
natural generalization of (96) connects with subschemes of
the association scheme considered in Example 3 which are not

-polynomial. Some results in this direction were obtained in
[1] and [125].

Finally, in addition to the (nonconstructive) results (96)–(99)
which give bounds for the Hamming space from bounds
for the Johnson space, let us point out a “constructive”
relationship between codes and designs in the Hamming and
Johnson schemes. It is the celebratedAssmus–Mattson theorem
[4], which allows one to obtain good combinatorial designs
and constant-weight codes from certain codes in the binary
Hamming scheme. A strengthening of this result can be found
in [29].

V. TRANSLATION SCHEMES

A. Definitions and Preliminaries

Certain association schemes are invariant under “transla-
tions,” of the form Examples are
the Hamming scheme and the composition scheme, described
in Section II-A (Examples 1 and 3). We shall examine the
appropriate generalization, under the name of “translation
schemes,” borrowed from [26]. A comprehensive treatment
of that subject is given by Camion [32]. The material of this
section is mainly taken from [42].

Definition 10: Let be a finite Abelian group, and let
be an -class association scheme. Assume that

is -invariant, i.e.,

if then

for all Then is said to be atranslation
scheme with respect to the group

We briefly examine the Hamming scheme from this
viewpoint. Let be Abelian groups of order ,
and consider their direct product It is
clear that is a translation scheme with respect toany of
these group structures.

This simple example shows that a given association scheme
may be a translation scheme with respect to several

group structures. Further explanation of the phenomenon will
be given in Section V-C.

For a translation scheme, the-numbers and the-numbers
(Definition 3) can be determined as follows.

The homomorphisms of the group to the group
are referred to as the (irreducible)charactersof

(Henceforth we often write instead of .) The set
of characters of has the structure of an Abelian group,
isomorphic to itself; this character group is called thedual
of and is denoted by We shall use a bracket notation for
characters, that is, , for and
The group characters satisfy theorthogonality relations

It is possible to identify with so as to have the symmetry
property for all

From the -class translation scheme we define a
partition of the group into
blocks This implies
and (for the pairing ). The relation can
be recovered from the block as follows:

(101)

It can be shown that there exists a unique partition
of the dual group into blocks

, with and with the following property. For
, define and by

(102)

Then is constant over each block and is constant
over each block More precisely

for (103)

for (104)

where the numbers and are the -numbers and the
-numbers of
The partition (of ) will be called thedual of the

partition (of ). From we define a partition of
like in (101). More precisely, with

It can be shown that is a translation scheme with
respect to the dual group From (102) it follows that
the -numbers of are the -numbers of and
conversely. Thus with an obvious notation, we have the duality
relations and , given in (25). In
particular, and

In the context of the Krein duality (Section II-C), this
leads us to introduce the following definition of duality for
translation schemes. It is equivalent to a concept introduced
by Tamaschke for commutative Schur rings [123].

Definition 11: Let be a translation scheme, with
respect to a given Abelian group , and let

be the corresponding partition of The translation
scheme , with respect to the dual group and
corresponding to the dual partition of

, is called thedual of the translation scheme
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An interesting treatment of duality in translation schemes
is given by Godsil, in relation with the theory ofequitable
partitions [54].

As an example, consider once again the Hamming scheme
, together with the Abelian group structure

In this case, the block in consists of the -ary
-tuples of weight (i.e., those having nonzero components).

Let us identify the dual group with It turns out that the
dual partition coincides with the weight partition Thus
for a suitable ordering, we have for all which
shows that the Hamming scheme isself-dual. The formulas
(103) and (104) lead to the expressions (17) of the- and
-numbers in terms of the Krawtchouk polynomials.
Similarly, the composition scheme (Example 3 in Section II-

A) is a self-dual translation scheme. There are other interesting
families of that type [41], [43], [89]. Some examples of
translation schemes that arenot self-dual can be found in [30]
and [37].

B. Additive Codes in a Translation Scheme

As a generalization of the classical notion of alinear code
over a field alphabet (in Hamming scheme), we shall examine
additive codes in a translation scheme.

Definition 12: A code in a translation scheme
is said to beadditive if is a subgroup of the underlying
Abelian group

Consider the inner distribution of an ad-
ditive code (see Definition 5). It follows from (101) that

counts the code points belonging to the block in the
partition , that is,

for

Next, we define the “annihilator code” of an additive code
by generalizing the usual notion of the orthogonal code of

a linear code in Hamming scheme. (The terminology is not
standard, but “annihilator” seems preferable to “orthogonal,”
in the general setting.)

Definition 13: Let be an additive code in a translation
scheme The annihilator codeof (with respect to
the given group ) is the code in the dual translation
scheme defined by

for all

It is clear that is an additive code in Similarly,
for an additive code in , we define its annihilator
code to be

for all

This is an additive code in For double annihilators,
we simply have

The character group of is related to by
(the group of coset codes with ). This

implies As a consequence of the orthogonality
relations on group characters, we obtain

if
if

(105)

If is a linear code of length over (in the usual sense),
then , the orthogonal of This stems from the fact
that the characters of are given by

for all Here, denotes thetrace from the field
to its prime subfield In the binary case, ,

this reduces to
The next result is a generalization of the MacWilliams

identities on the weight distributions of a linear code and its
orthogonal. It produces a clear interpretation of Theorem 3
in the restricted framework of additive codes in translation
schemes. The proof is based on (103)–(105).

Theorem 27 (Generalized MacWilliams Identities [37],
[42]): The inner distribution of

is proportional to the -transform of the inner distribution
of More precisely

As a consequence, the fundamental parameters (see Section
III-C) of a code in a translation scheme are related
to those of its annihilator code by

Finally, let us examine the outer distribution of an
additive code (see Definition 8). In view of (101), noting
that , we obtain

for

This means that the-row of is the distribution of
the coset code with respect to the partition

For the outer distribution of the annihilator code ,
we similarly have with
and As an extension of Theorem 27 we obtain
the following expression for the -transform of the outer
distribution rows:

(106)

By use of (106) we can derive a remarkable result (Theorem
28 below) that allows us to decide whether a given additive
code carries a (translation) subscheme of , and to
characterize the dual of this subscheme. Note that by Theorems
7 and 27 the rank of the outer distribution of is equal
to

Definition 14: Let be an additive code of degree
in a translation scheme If the restriction

is an association scheme (withclasses), then it is
called asubschemeof
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Theorem 28 [37]: Given an additive code of degree ,
the restriction is a subscheme of if and only
if the outer distribution of the annihilator code has

distinct rows.

In this case, the dual scheme of the translation scheme
is where consists of

the relations on defined as follows: a pair
of coset codes belongs to a given relation

if and only if the outer distribution row is a
fixed -tuple (among the possibilities).

For example, Theorem 28 applies to the extended binary
Golay code examined in Section IV-C. Recall that is self-
orthogonal: The code has degree ,
and the outer distribution of its orthogonal has
five distinct rows. The -class association scheme
carried by is mentioned at the end of Section IV-D. Since

is -polynomial, its dual scheme , carried
by the factor group , is -polynomial. It is the
“distance scheme” for the cosets of the extended binary Golay
code (see [26, p. 361]).

The reader familiar with the Golay code may be interested
in a more sophisticated example. Take to be the perfect
binary Golay code of length (and dimension ). This
code has degree The orthogonal code can be
shown to be completely regular; its outer distribution has
eight distinct rows corresponding to the eight values

(see [26, p. 362]).

C. -Additive Binary Codes

Important research work has been devoted recently to the
class of binary codes that are additive over, the cyclic
group of order (see especially [57] and [92]). This subsection
aims at showing how that subject fits into the framework of
association scheme theory.

From a group-theoretic viewpoint, translation schemes can
be presented as follows. Let denote the automor-
phism group of a given association scheme Assume
that contains an Abelian subgroup which is
regular on , in the sense that is transitive on and has
order This provides the point set with the structure
of an Abelian group , isomorphic to , through the
definition

for all

where is a fixed point in It is clear that is
a translation scheme with respect to (see Definition
10). In fact, the “translation structures” of correspond
exactly to the regular Abelian subgroups of

Consider the binary Hamming scheme (see Example
2 in Section II-D). Its automorphism group is the monomial
group (or hyperoctahedral group) of degree (and order

). As we shall see, contains several regular Abelian
subgroups.

For , the monomial group (of order ), is
the symmetry group of the square It contains an
element of order that cyclically permutes the four vertices

, namely,

In effect, for we obtain

In terms of the usual binary alphabet , this induces the
cyclic permutation of the binary ordered pairs,
with

(107)
As a conclusion, contains two regular Abelian sub-

groups: not only the elementary Abelian group
(consisting of the diagonal matrices), but also the cyclic group

generated by
Note that the cyclic permutation in (107) corresponds to

the Gray map between and , that is,
This map underlies the

“concrete approach” to -additive binary codes [57].
Let us now turn to the general case of with By

considering partitions of the coordinate positions in blocks
of size or , we obtain a whole class of regular Abelian
subgroups of of the form

with

Each of the groups (together with a corresponding co-
ordinate partition) provides with a translation scheme
structure, and gives rise to a well-defined class of additive
(binary) codes (see Definition 12).

Let be an additive code with respect to, and let
be the annihilator code of (see Definition 13). In view of
Theorem 27, the inner distributions of and (which are
their ordinary weight distributions) are related to each other
by the MacWilliams identities in theusual sense.

The “homogeneous cases” are , which yields the
class of linear binary codes, and (for even ), which
yields the class of -additive binary codes[57]. In the latter
case, the annihilator code of is the natural orthogonal
code over the cyclic group

A very interesting example is provided by theKerdock
codes and their -orthogonals which are the “Preparata
codes” (see [57]). Quotes are used here becauseis not
exactly the same as the official Preparata code, although they
both have the same essential properties and, in particular, the
same distance distribution. This example is quite remarkable
for the following reason. It has been known for a long time that
the weight distributions of the Kerdock and Preparata codes are
the MacWilliams transform of each other, although these codes
are nonlinear (over The result in [57] alluded to above
says that is -additive, and it identifies the -orthogonal

of as a certain “Preparata code”
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Note Added in Proof

It is worth pointing out that the class of additive (binary)
codes considered at the end of Section V-C coincides with the
class ofadditive propelinear codesinvestigated by Rif̀a and
Pujol [136].

REFERENCES

[1] M. Aaltonen, “A new upper bound on nonbinary block codes,”Discr.
Math., vol. 83, pp. 139–160, 1990.

[2] R. Askey and J. Wilson, “A set of orthogonal polynomials that generalize
the Racah coefficients or6� j symbols,”SIAM J. Math. Anal., vol. 10,
pp. 1008–1016, 1979.

[3] E. F. Assmus, Jr., and J. D. Key,Designs and Their Codes. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[4] E. F. Assmus, Jr., and H. F. Mattson, Jr., “New 5-designs,”J. Combin.
Theory, vol. 6, pp. 122–151, 1969.

[5] , “Coding and combinatorics,”SIAM Rev., vol. 16, pp. 349–388,
1974.

[6] E. F. Assmus, Jr., and V. Pless, “On the covering radius of extremal
self-dual codes,”IEEE Trans. Inform. Theory, vol. IT-29, pp. 359–363,
1983.

[7] E. Bannai, “On tight designs,”Quart. J. Math. Oxford, vol. 28, pp.
433–448, 1977.

[8] , “Tannaka–Krein duality for association schemes,”Linear Alge-
bra Appl., vol. 46, pp. 83–90, 1982.

[9] , “Orthogonal polynomials in coding theory and algebraic com-
binatorics,” inOrthogonal Polynomials, P. Nevai, Ed. Norwell, MA:
Kluwer, 1990, pp. 25–53.

[10] E. Bannai and T. Ito,Algebraic Combinatorics I. Association Schemes.
Menlo Park, CA: Benjamin/Cummings, 1984.

[11] , “Current research on algebraic combinatorics,”Graphs Combin.,
vol. 2, pp. 287–308, 1986.

[12] L. A. Bassalygo, “New upper bounds for error correcting codes,”Probl.
Inform. Transm., vol. 1, no. 4, pp. 32–35, 1965.

[13] V. Belevitch, “Conference networks and Hadamard matrices,”Ann. Soc.
Scient. Bruxelles, vol. 82, pp. 13–32, 1968.

[14] M. R. Best and A. E. Brouwer, “The triply shortened binary Hamming
code is optimal,”Discr. Math., vol. 17, pp. 235–245, 1977.

[15] T. Beth, D. Jungnickel, and H. Lenz,Design Theory. Manheim,
Germany: Bibl. Institut-Wissenschaftsverlag, 1985.

[16] J. Bierbrauer, K. Gopalakrishnan, and D. R. Stinson, “Bounds for
resilient functions and orthogonal arrays,” inAdvances in Cryptol-
ogy–CRYPTO’94, Lecture Notes in Computer Science No. 839, Y. G.
Desmedt, Ed. New York: Springer-Verlag, 1994, pp. 247–256.

[17] N. L. Biggs, “Perfect codes in graphs,”J. Combin. Theory Ser. B, vol.
15, pp. 289–296, 1973.

[18] , Algebraic Graph Theory. Cambridge, U.K.: Cambridge Univ.
Press, 1974.

[19] H. F. Blichfeldt, “The minimum value of quadratic forms and the closest
packing of spheres,”Math. Ann., vol. 101, pp. 605–608, 1929.

[20] R. C. Bose, “Strongly regular graphs, partial geometries and partially
balanced designs,”Pacific J. Math., vol. 13, pp. 389–419, 1963.

[21] R. C. Bose and D. M. Mesner, “On linear associative algebras corre-
sponding to association schemes of partially balanced designs,”Ann.
Math. Statist., vol. 30, pp. 21–38, 1959.

[22] R. C. Bose and K. R. Nair, “Partially balanced incomplete block
designs,”Sankhy¯a, vol. 4, pp. 337–372, 1939.

[23] R. C. Bose and T. Shimamoto, “Classification and analysis of partially
balanced incomplete block designs with two associate classes,”J. Amer.
Statist. Assoc., vol. 47, pp. 151–184, 1952.

[24] P. G. Boyvalenkov, D. P. Danev, and S. P. Bumova, “Upper bounds on
the minimum distance of spherical codes,”IEEE Trans. Inform. Theory,
vol. 42, pp. 1576–1581, 1996.

[25] P. Boyvalenkov and D. Danev, “On linear programming bounds for
codes in polynomial metric spaces,” to be published inProbl. Inform.
Transm.

[26] A. E. Brouwer, A. M. Cohen, and A. Neumaier,Distance-Regular
Graphs. Berlin, Germany: Springer-Verlag, 1989.

[27] A. E. Brouwer and T. Verhoeff, “An updated table of minimum-distance
bounds for binary linear codes,”IEEE Trans. Inform. Theory, vol. 39,
pp. 662–675, 1993.

[28] A. R. Calderbank and P. Delsarte, “Extending thet-design concept,”
Trans. Amer. Math. Soc., vol. 338, pp. 941–952, 1993.

[29] A. R. Calderbank, P. Delsarte, and N. J. A. Sloane, “A strengthening
of the Assmus–Mattson theorem,”IEEE Trans. Inform. Theory, vol. 37,

pp. 1261–1268, 1991.
[30] A. R. Calderbank and J.-M. Goethals, “On a pair of dual subschemes of

the Hamming schemeHn(q),” Europ. J. Comb., vol. 6, pp. 133–147,
1985.

[31] A. R. Calderbank and N. J. A. Sloane, “Inequalities for covering codes,”
IEEE Trans. Inform. Theory, vol. 34, pp. 1276–1280, 1988.

[32] P. Camion, “Codes and association schemes,” inHandbook of Coding
Theory, V. S. Pless and W. C. Huffman, Eds. Amsterdam, The
Netherlands: Elsevier, 1998.

[33] P. Camion, C. Carlet, P. Charpin, and N. Sendrier, “On correlation-
immune functions,” inAdvances in Cryptology–CRYPTO’91, Lecture
Notes in Computer Science No. 676, J. Feigenbaum, Ed. New York:
Springer-Verlag, 1991, pp. 86-100.

[34] G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr., and J. R. Schatz,
“Covering radius—Survey and recent results,”IEEE Trans. Inform.
Theory, vol. IT-31, pp. 328–343, 1985.

[35] P. Delsarte, “Bounds for unrestricted codes, by linear programming,”
Philips Res. Repts., vol. 27, pp. 272–289, 1972.

[36] , “Four fundamental parameters of a code and their combinatorial
significance,”Inform. Contr., vol. 23, pp. 407–438, 1973.

[37] , “An algebraic approach to the association schemes of coding
theory,” Philips Res. Repts. Suppl., vol. 10, 1973.

[38] , “Association schemes andt-designs in regular semilattices,”J.
Combin. Theory Ser. A, vol. 20, pp. 230–243, 1976.

[39] , “Pairs of vectors in the space of an association scheme,”Philips
Res. Repts., vol. 32, pp. 373–411, 1977.

[40] , “Hahn polynomials, discrete harmonics, andt-designs,”SIAM
J. Appl. Math., vol. 34, pp. 157–166, 1978.

[41] , “Bilinear forms over a finite field, with applications to coding
theory,” J. Combin. Theory Ser. A, vol. 25, pp. 226–241, 1978.

[42] , “Application and generalization of the MacWilliams transform
in coding theory,” inProc. 15th Symp. Information Theory in the Benelux
(Louvain-la-Neuve, Belgium, 1994), pp. 9–44.

[43] P. Delsarte and J.-M. Goethals, “Alternating bilinear forms over
GF(q),” J. Combin. Theory Ser. A, vol. 19, pp. 26–50, 1975.

[44] P. Delsarte, J.-M. Goethals, and J. J. Seidel, “Bounds for systems
of lines, and Jacobi polynomials,”Philips Res. Repts., vol. 30, pp.
91�–105�, 1975.

[45] , “Spherical codes and designs,”Geom. Dedicata, vol. 6, pp.
363–388, 1977.

[46] C. F. Dunkl, “A Krawtchouk polynomial addition theorem and wreath
products of symmetric groups,”Indiana Univ. Math. J., vol. 25, pp.
335–358, 1976.

[47] , “Discrete quadrature and bounds ont-design,”Mich. Math. J.,
vol. 26, pp. 81–102, 1979.

[48] , “Orthogonal functions on some permutation groups,” inProc.
Symp. Pure Math. 34(Providence, RI: Amer. Math. Soc., 1979), pp.
129–147.
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Cambridge, U.K.: Cambridge Univ. Press, 1979, pp. 157–180.

[106] C. Shannon, “The zero error capacity of a noisy channel,”IRE Trans.
Inform. Theory, vol. 2, pp. 8–19, 1956.

[107] , “Probability of error for optimal codes in Gaussian channel,”
Bell Syst. Tech. J., vol. 38, pp. 611–656, 1959.

[108] C. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to
error probability for coding on discrete memoryless channels,”Inform.
Contr., vol. 10, pp. 65–103 and 522–552, 1967.

[109] V. M. Sidelnikov, “On mutual correlation of sequences,”Sov.
Math.–Dokl., vol. 12, no. 1, pp. 197–201, 1971.

[110] , “New bounds for densest packings of spheres inn-dimensional
Euclidean space,”Math. USSR Sbornik, vol. 24, pp. 147–157, 1974.

[111] , “Upper bounds on the number of points of a binary code with
a specified code distance,”Probl. Inform. Transm., vol. 10, no. 2, pp.
124–131, 1974.

[112] , “Extremal polynomials used in bounds of code volume,”Probl.
Inform. Transm., vol. 16, no. 3, pp. 174–186, 1980.

[113] T. Siegenthaler, “Correlation immunity of nonlinear combining function
for cryptographic applications,”IEEE Trans. Inform. Theory, vol. IT-30,
pp. 776–780, 1984.

[114] L. J. Slater,Generalized Hypergeometric Functions. Cambridge, U.K.:
Cambridge Univ. Press, 1966.

[115] N. J. A. Sloane, “An introduction to association schemes and coding
theory,” in Theory and Application of Special Functions, R. A. Askey,
Ed. New York: Academic, 1975, pp. 225–260.

[116] , “Recent bounds for codes, sphere packings and related problems
obtained by linear programming and other methods,”Contemp. Math.,
vol. 9, pp. 153–185, 1982.
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