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Open Problems in Coding Theory

Steven Dougherty, Jon-Lark Kim, and Patrick Solé

Abstract. We present major open problems in algebraic coding theory. Some
of these problems are classified as Hilbert problems in that they are founda-

tional questions whose solutions would lead to further study. The remainder
are classified as Fermat problems in that they are difficult problems in coding
theory that have defied solution for a significant period of time.

1. Introduction

Coding theory began around 1950 to enable the detection and correction of
errors in electronic communication. See Shannon seminal work [68] and Hamming’s
paper [36] for foundational work in this area. Soon after this, mathematicians began
to treat the fundamental problems of coding theory as mathematical questions
without necessarily being concerned with engineering applications. By the 1970s
significant research had gone into both the practical and theoretical aspects of
coding theory. Around this time, connections to finite geometry, combinatorics and
lattice theory were made. Within 40 years of its birth, coding theory had become
an important branch of algebra with numerous connections to other branches of
mathematics and to applications in information theory and cryptography.

In the early 1990s, a connection was made between linear codes over Z4 and
non-linear binary codes in the landmark paper [37]. This paper sparked an enor-
mous amount of interest in codes over rings. Soon after this time, coding theory
was studied over a variety of algebraic alphabets and the discipline broadened sig-
nificantly. The notion of distance was also broadened at this time as serious study
of non-Hamming metrics began. At present, coding theory concerns a wide variety
of alphabets and metrics and it is in this setting that we shall present a collection
of open problems. Some of these questions are fundamental to the study of cod-
ing theory and some of these questions are related to connections between coding
theory and other objects.

We separate the problems into Hilbert problems and Fermat problems. A
problem is a Hilbert problem if it is a large structural problem like Hilbert’s famous
problems from the International Congress of Mathematicians in 1900. A problem is
a Fermat problem if it is like Fermat’s last theorem, in that it is a very hard problem
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that has withstood years of attempts to solve it and the usual techniques of the
discipline seem not to work. For example, a Hilbert problem would be a question
which pertains to the structure of coding theory, whereas a Fermat problem can
simply be a very difficult problem within the discipline. We shall place each problem
in its setting and explain partial results in the direction of the solution.

2. Definitions and Notations

We shall begin by giving some definitions and notations that will be used
throughout the paper. Definitions that are specific to a particular problem will
be given in the section pertaining to that particular problem.

A code C over an alphabet A is a simply a subset of An. If A is a ring, then we
say that the code C is linear if it is a submodule of An. For codes over fields, this
means that linear codes are vector spaces. We will assume that codes are linear
codes over rings unless otherwise specified.

If A is a ring, then the ambient space An is equipped with an inner-product,
specifically [v,w] =

∑
viwi, where wi is an involution on the ring. For example, if R

is the field of order 4, often the involution sending ω to ω2 is used. The usual prop-
erties hold in this setting, namely, [v1 + v2,w] = [v1,w] + [v2,w], [v,w] = [w,v]
and [αv, βw] = αβ[v,w]. If wi = wi we say the inner-product is the Euclidean
inner-product, otherwise we say it is a Hermitian inner-product. Often the applica-
tion of the code determines which inner-product is used. We define the orthogonal
to be C⊥ = {v | [v,w] = 0, ∀w ∈ C}. We note that C⊥ is always a linear code.
If C ⊆ C⊥ we say that the code is self-orthogonal and if C = C⊥ we say that the
code is self-dual.

Given a metric D in An, we say d is the minimum distance of a code C with
respect to D, if d = min{D(v,w) | v,w ∈ C,v �= w}. The minimum weight of a
code is min{D(v,0) | v ∈ C,v �= 0}.

If C is a linear code in Fn where F is a field then we say that C is an [n, k, d]
code if the ambient space is Fn, the dimension of the code is k, and the minimum
Hamming weight of the code is d. For codes over rings we shall avoid this notation
since, in general, we do not have the same notion of dimension. We can however
always use the notation (n,M, d) to indicate the code has length n, M elements
and minimum distance d.

We define the complete weight enumerator of a code over an alphabet
{a0, a1, . . . , as} by

cweC(x0, x1, . . . , xs) =
∑

v∈C

∏
x
ni(v)
i ,

where there are ni(v) occurrences of ai in v. The Hamming weight enumerator of C
is given by WC(x, y) = cwe(x, y, y, . . . , y). For simplicity, we often set x = 1 when
displaying this weight enumerator.

Hilbert Problems

3. Fundamental Problem of Coding Theory

The following is the original question of coding theory and remains the funda-
mental question of coding theory.
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Open Question 3.1. For a fixed n, d and Fq, find A(n, d), the largest M such
that there exists a code C ⊂ F

n
q with |C| = M .

There are numerous known cases for given n and d over various small fields.
However, the question remains unknown for most cases. The question can also be
rephrased holding fixed any two parameters.

In general, more attention is paid to the linear version.

Open Question 3.2. For a fixed n, d and Fq, find k[n, d], the largest integer
k ≤ n such that there exists a linear code C ⊆ F

n
q with dim(C) = k and minimum

weight d.

We can state the fundamental question in its most general form.

Open Question 3.3. Given a finite metric space Xn and a metric D, fix n
and d. Find the largest M such that there exists a code C ⊆ Xn, with minimum
distance d, and M = |C|.

Various forms of Open Problem 3.3 can be stated. For example, one might ask
to find the optimal codes over Z4 with respect to the Lee metric or over Z2k with
the Euclidean metric.

The case of X = J(n,w) the Johnson scheme with D equal to the Johnson
distance leads to the definition of A(n, d, w) the largest size of a constant weight
code with given parameters. The case of X = Sn, the symmetric group, with the
Hamming distance leads to the concept of permutation arrays. Both cases can
be generalized further by looking at cartesian products with the sum of distances
leading to the notions of multiple constant weight codes and multipermutation
arrays respectively.

It seems very unlikely that a universal theoretical bound will be given in a
closed form to solve this problem, since so many bounds exists which are often
met. It seems also equally unlikely that the solution to Open Problem 3.1, Open
Problem 3.2, Open Problem 3.3, will yield to an algorithmic approach, since all
these problems are of the type of finding a maximum clique in some graphs, which
is a notoriously difficult problem [17]. This begs the following problem.

Open Question 3.4. What is the complexity status of computing A(n, d),
A(n, d, w), k[n, d] and the above permutation analogues?

While much work has been done in the area of the complexity of coding prob-
lems [29], these questions remain open.

4. Duality for non-Abelian groups

One of the foundations of coding theory is the use of an inner-product which
gives rise to an orthogonal. The parity check matrix which generates the orthogonal
is used in many decoding algorithms. The MacWilliams relations relate the weight
enumerator of the code with its orthogonal and are one of the foundational theorems
of coding theory.

One can generate an orthogonal for Abelian groups as follows. Let G be a finite
abelian group and fix a duality of G, i.e. a character table. We have a bijective

correspondence between the elements of G and those of Ĝ = {π|π a character of
G}. Note a character of G is a homomorphism from G to the multiplicative group
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of the complex numbers. For each α ∈ G denote the corresponding character by
χα.

A code C over G is a subset of Gn, the code is said to be linear if C is an
additive subset of Gn.

Definition 4.1. For C a code over G, C⊥ = {(g1, g2, . . . , gn)|
∏n

i=1 χgi(ci) = 1
for all (c1, . . . , cn) ∈ C}.

We associate an element of Ĝn with an element of Gn with the natural cor-
respondence and since (Ĝ)n = Ĝn the code C⊥ is associated with the set {χ ∈
Ĝn|χ(c) = 1 for all c ∈ C}. This gives that |C⊥| = |Ĝ|n

|C| = |G|n
|C| and that

C = (C⊥)⊥.
Let G = {αi} with α0 the additive identity of the group.
Let T be defined as follows:

Tαi,αj
= χαi

(αj).

Using the Poisson summation formula we have the following theorem.

Theorem 4.2. Let C be a code over G, |G| = s, with weight enumerator
cweC(x0, x1, . . . , xs−1). Then the complete weight enumerator of the orthogonal is
given by:

cweC⊥ =
1

|C|cweC(T · (x0, x1, . . . , xs−1)),

where T · v indicates the matrix multiplication Tvt, and

WC⊥ =
1

|C|WC(x+ (s− 1)y, x− y).

This approach does not work for non-Abelian groups. This leads to our next
open question.

Open Question 4.3. Is there a duality and MacWilliams formula for codes
over non-Abelian groups? Is there a subclass of non-Abelian groups for which a
duality and a MacWilliams formula exists?

There are many difficulties in trying to solve this problem. For example,
consider the non-Abelian Quaternion group of order 8. This group has elements
{±1,±i,±j,±k}. There are three subgroups of order 4 in this group, that is {±1,±i},
{±1,±j} and {±1,±k}. But there is only one group of order 2, that is {±1}. If a
linear code is defined as a subgroup (or even normal subgroup) of Gn then these
are all linear codes. If we expect that |C||C⊥| = |G|n, then each subgroup of or-
der 4 would need a subgroup of order 2 to be its orthogonal and the subgroup of
order 2 would need a subgroup of order 4 to be its orthogonal. This would not
be possible here, in other words we could not have (C⊥)⊥ = C in this scenario.
Hence this problem may require a duality where some of the standard results are
false, or we may restrict this to a subclass of non-Abelian groups where the theory
can be reproduced. Alternatively, one might show that no such duality can exist
for any non-Abelian group. This example is also important in that there is a Gray
map from the Quaternion group to the binary Hamming space. Hence, it would be
important to have an inner-product for this group that relates to this Gray map.

More generally, we have the following question.
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Open Question 4.4. Find the largest class of algebraic structures A for which
a duality and MacWilliams relations hold.

An enormous step forward was given in [76]. It was shown there that the largest
class of rings would be the class of Frobenius rings. In the proof given in [76], the
fact that the underlying additive group is abelian is used so that the technique does
not apply to the above question.

5. Designs and Codes

Since the beginning of the study of coding theory, there has been a very fruitful
connection between the study of codes and the study of designs. A t−(v, k, λ) design
is a set of points and blocks, such that there are v points, each block contains
k points, and through any t points there are exactly λ blocks. For example, a
projective plane of order n is a 2− (n2 + n+ 1, n+ 1, 1) design.

One of the most significant theorems relating codes and designs is the Assmus-
Mattson theorem which first appeared in [1].

Theorem 5.1. Assmus-Mattson Theorem Let C be a code over Fq of length
n with minimum weight d, and let d⊥ denote the minimum weight of C⊥. Let
w = n when q = 2 and otherwise the largest integer w satisfying w − (w+q−2

q−1 ) < d,

define w⊥ similarly. Suppose there is an integer t with 0 < t < d that satisfies
the following condition: for WC⊥(Z) = BiZ

i at most d − t of B1, B2, . . . , Bn−t

are non-zero. Then for each i with d ≤ i ≤ w the supports of the vectors of
weight i of C, provided there are any, yield a t-design. Similarly, for each j with
d⊥ ≤ j ≤ min{w⊥, n − t} the supports of the vectors of weight j in C⊥, provided
there are any, form a t-design.

One of the most fruitful uses of this theorem is to find 5-designs in the extremal
doubly-even self-dual binary codes of length 24 and 48. There would also be 5-
designs in the putative [24k, 12k, 4k + 4] codes, see Open Problem 7.1 and Open
Problem 7.7

Open Question 5.2. Find a theoretical limit for t such that there exists t-
designs via the Assmus-Mattson theorem applied to a linear code, or prove that no
such limit exists by finding codes with t-designs for arbitrary t.

Toward this very large question it would be interesting to solve the following.

Open Question 5.3. Find 5-designs that are not in [24k, 12k, 4k + 4] codes
Type II codes or any 6-designs in codes.

6. MDS Codes

One of the most important bounds on the size of the minimum distance is the
following Singleton Bound. It first appeared in [71].

Theorem 6.1. Let C be a code over an alphabet A with length n, minimum
distance d and size k = log|A|(C). Then d ≤ n− k + 1.

This bound assumes no algebraic structure for the code at all, in this sense it
is a purely combinatorial bound. Codes meeting this bound are called Maximum
Distance Separable (MDS) codes. Finding such codes is largely a combinatorial
problem.
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This combinatorial bound is equivalent to a number of interesting combinatorial
questions involving mutually orthogonal Latin squares (and hypercubes) and arcs
of maximal size in projective geometry. As an example, consider the following
theorem. See [38] for a complete description and a proof of the theorem.

Theorem 6.2. A set of s mutually orthogonal Latin squares of order q is equiv-
alent to an MDS [s+ 2, q2, s+ 1] code over Fq.

The question of determining exactly when a set of s MOLS exist has been
largely open since 1782. While numerous cases are known, the vast majority of
cases remains open.

When considering the algebraic structure of codes over rings, a stronger bound
can be made for codes over a principal ideal ring.

Theorem 6.3. Let C be a linear code over a principal ideal ring, then

d(C) ≤ n− k + 1

where k is the rank of the code.

Codes meeting this bound are called Maximum Distance with respect to Rank
(MDR). See [27] for a discussion of these codes. Of course, simply because a code
is MDR does not imply that the code is MDS, in general, it will not be. In fact,
showing a code is MDR (when it is not also MDS) indicates that the code is optimal
and so there can be no linear MDS code with the same parameters.

Open Question 6.4. Find and classify all MDS and MDR codes over various
classes of alphabets.

For some results on MDR code see [34]. These bounds have been generalized
to other weight for codes over rings of order 4 in [25].

Theorem 6.5. If C is a code of length n over any ring of order 4 with minimum
Hamming weight dH , minimum Lee weight dL, minimum Euclidean weight dE , and
minimum Bachoc weight dB then

(1)

⌊
dL − 1

2

⌋
≤ n− rank(C),

(2)

⌊
dE − 1

4

⌋
≤ n− rank(C),

and

(3)

⌊
dB − 1

2

⌋
≤ n− rank(C).

A code meeting bound (1) is a Maximum Lee Distance with respect to Rank
(MLDR) Code, a code meeting bound (2) is a Maximum Euclidean Distance with
respect to Rank (MEDR) Code, a code over meeting bound (3) is a Maximum
Bachoc Distance with respect to Rank (MBDR) Code.

Open Question 6.6. Find and classify all MLDR, MEDR, MBDR codes over
rings of order 4.
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Fermat Problems

7. Doubly-even binary codes

In this section, we shall describe one of the most fascinating open questions in
coding theory. Namely, the question asks if extremal doubly-even binary self-dual
codes exist of lengths a multiple of 24. It is one of the most studied open questions
in coding theory. It is the quintessential Fermat type problem in that most coding
theorists have tried to solve it, but the standard techniques do not seem to be able
to solve it. Rather, they seem to find equally difficult problems to solve which
would in turn solve this problem.

We say that a code is self-dual if C = C⊥. It is self-orthogonal if C ⊆ C⊥. If a
binary self-dual code has all weights congruent to 0 (mod 4) then the code is said
to be Type II, otherwise it is said to be Type I. Type II codes are said to have
weights that are doubly-even.

The first open question is the following, it was first posed in [69] in 1973.

Open Question 7.1. Does there exist a Type II [72, 36, 16] code?

Some monetary prizes have been offered for its solution. Specifically, the fol-
lowing have been offered: N.J.A. Sloane $10; S.T. Dougherty $100 for the existence;
M. Harada $200 for the nonexistence. The usual conditions apply, namely that the
prizes will be paid only once and a solution must be accepted by the mathematical
community.

We shall show where the problem arises. If C is a self-dual code then the
Hamming weight enumerator is held invariant by the MacWilliams relations and
hence by the following matrix:

M =
1√
2

(
1 1
1 −1

)
.

If the code is doubly-even, that is the Hamming weights of all vectors are 0
(mod 4), then it is also held invariant by the following matrix:

A =

(
1 0
0 i

)
.

The group G = 〈G,A〉 has order 192. To this group we associate the series
Φ(λ) =

∑
aiλ

i, where there are ai independent polynomials held invariant by the
group G. Next, we apply the classic theorem of Molien.

Theorem 7.2. (Molien) For any finite group G of complex m by m matrices,
Φ(λ) is given by

(4) Φ(λ) =
1

|G|
∑

A∈G

1

det(I − λA)

where I is the identity matrix.

This theorem allows us to compute the number of independent polynomials
held invariant by the group.

For our group G we get

(5) Φ(λ) =
1

(1− λ8)(1− λ24)
= 1 + λ8 + λ16 + 2λ24 + 2λ32 + . . .
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The generating invariants can be found. Specifically, we have:

(6) W1(x, y) = x8 + 14x4y4 + y8

and

(7) W2(x, y) = x4y4(x4 − y4)4.

Then we have the well known Gleason’s Theorem first proven in [33].

Theorem 7.3. The weight enumerator of a Type II self-dual code is a poly-
nomial in W1(x, y) and W2(x, y), i.e. if C is a Type II code then WC(x, y) ∈
C[W1(x, y),W2(x, y)].

It follows that if C is a Type II [n, k, d] code then

(8) d ≤ 4
⌊ n

24

⌋
+ 4.

Codes meeting this bound are called extremal. Notice that extremal codes are
necessarily optimal in the sense that they are the best self-dual codes possible,
whereas simply being optimal does not imply that the code is extremal. We inves-
tigate those with parameters [24k, 12k, 4k + 4]. Using Gleason’s Theorem stated
above, if a code has parameters [24k, 12k, 4k+4] then the code has a unique weight
enumerator. It is not known whether these codes exist until 24k ≥ 3720, at which
point a coefficient becomes negative.

For length 24, there is a [24, 12, 8] code, namely the well known Golay code.
This code is formed by adding a parity check coordinate from the perfect [24, 12, 7]
binary Golay code. For length 48, there is also a code, namely the extended qua-
dratic residue code q48. See Open Problem 9.1 for an open problem concerning this
code. Hence the first unknown case is whether there exists a [72, 36, 16] code.

We shall focus on the first case, namely when k = 3 realizing that there is a
corresponding result for all k. Using Gleason’s theorem it is easy to determine the
weight enumerator for a putative [72, 36, 16] Type II code. It is given in Table 1.

Table 1. The Weight Enumerator for a Type II [72, 36, 16] Code

Ci i
1 0, 72

249849 16, 56
18106704 20, 52

462962955 24, 48
4397342400 28, 44

16602715899 32, 40
25756721120 36

We shall show that the existence of the extremal Type II codes of length 24k
are intimately related to the existence of certain Type I codes of length 24k− 2. In
particular, the existence of a [72, 36, 16] Type II code is equivalent to the existence
of a [72, 35, 24] Type I code.

Let C be a self-dual code with C0 the subcode of doubly-even vectors. If the
code C is Type I then C0 = C, otherwise the subcode C0 is linear and of codimension
1. Hence, we shall now assume that C is Type I. Then C⊥

0 = C0 ∪ C1 ∪ C2 ∪ C3

with C = C0 ∪ C2. We define the shadow to be

(9) S = C1 ∪ C3 = C⊥
0 − C.
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Note that the shadow is a non-linear code. We shall show how to determine the
weight enumerator of the shadow from the weight enumerator of the code.

Given the above situation we have:

(10) WC0
(x, y) =

1

2
(WC(x, y) +WC(x, iy))

where i is the complex number with i2 = −1. This follows simply by noting that
replacing y with iy will hold fix monomials representing doubly-even vectors and
will put a minus sign in front of a monomial representing singly-even vectors.

The following appears in [20].

Lemma 7.4. Let C be a Type I self-dual code with S its shadow then

(11) WS(x, y) = WC

(
x+ y√

2
,
i(x− y)√

2

)
.

The following theorem appears in [11], it shows how to construct a larger self-
dual code from a smaller one.

Theorem 7.5. Let C be a self-dual code of length n, C0 be any subcode of
codimension 1, and S be the shadow with respect to that subcode, with C⊥

0 =
C0∪C1∪C2∪C3 as described above. Then if j /∈ C0, where j is the all-one vector, the
code C ′ = (0, 0, C0)∪(1, 1, C2)∪(1, 0, C1)∪(0, 1, C3) is a self-dual code of length n+2
with weight enumerator: WC′ = x2WC0

(x, y)+y2WC2
(x, y)+xyWS(x, y). If j ∈ C0

then the code C ′ = (0, 0, 0, 0, C0) ∪ (1, 1, 0, 0, C2) ∪ (1, 0, 1, 0, C1) ∪ (0, 1, 1, 0, C3)
is self-orthogonal and the code C∗ = 〈v, C ′〉, where v = (1, 1, 1, 1, 0, . . . , 0), is
a self-dual code of length n + 4 with weight enumerator: (x4 + y4)WC0

(x, y) +
(2x2y2)(WC1

(x, y) +WC2
(x, y) +WC3

(x, y)).

Using this theorem, it is then a simple matter to show that the existence of the
length 72 code is equivalent to the the existence of a [70, 35, 14] Type I which we
call the child code. We give its weight distribution in Table 2. We give the weight
distribution of its shadow in Table 3.

Table 2. The Weight Distribution of a [70,35,14] Code

Weight Frequency
0, 70 1
14, 56 11730
16, 54 150535
18, 52 1345960
20, 50 9393384
22, 48 49991305
24, 46 204312290
26, 44 650311200
28, 42 1627498400
30, 40 3221810284
32, 38 5066556495
34, 36 6348487600

Let v be a vector of weight 4 with C a putative [72, 36, 16] code. Then let
E0 = {w | w ∈ C, [w,v] = 0}. Then let E = 〈E0,v〉. The code E is a Type II
code with minimum weight 4. Using the design properties of the vectors in C, it
is possible to determine the weight enumerator of of its length 68 child as given in
Theorem 7.5. Both of these weight enumerators are given in Table 4.
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Table 3. The Weight Distribution of the Shadow of a [70,35,14] Code

Weight Frequency
15, 55 87584
19, 51 7367360
23, 47 208659360
27, 43 2119532800
31, 39 8314349120
35 13059745920

Table 4. The Weight Distribution of the Weight 4 Neighbor and
its Subcode

C0 C′

Weight Frequency Frequency
0, 72 1 1
4, 68 0 1
12, 60 0 442
16, 56 134521 264673
20, 52 9284176 18589296
24, 48 232444043 464824659
28, 44 2196187840 4392509606
32, 40 8298695163 16597183691
36 12886246880 25772731998

Other weight enumerators can also be used to understand codes and have been
used in connection to this problem. We shall give the definition of higher weights,
introduced by Wei [75], following the notation in [73]. Let D ⊆ F

n
2 be a linear

subspace, then

(12) ||D|| = |Supp(D)|,
where

(13) Supp(D) = {i | ∃v ∈ D, vi �= 0}.
For a linear code C define

(14) dr(C) = min{||D|| | D ⊆ C, dim(D) = r}.
The higher weight spectrum is defined as

(15) Ar
i = |{D ⊆ C | dim(D) = r, ||D|| = i}|.

and then we define the higher weight enumerator by

(16) W r(C; y) = W r(C) =
∑

Ar
i y

i.

In [24] a Gleason’s theorem for higher weight enumerators is given and the
second higher weight enumerator for the putative length 72 code is given and follows
in Table 5.

In [26], the higher weight enumerators are given for i = 12 to 36. No contradic-
tion has been found in investigating these weight enumerators nor have they been
useful in constructing a code. It would be of interest to compute the remaining open
higher weight enumerators. There is a possibility, of course, that a contradiction
can be found in these weight enumerators.

Another technique used in investigating this code is the automorphism group
of the code. The automorphism group of a code C denoted by Aut(C) is the set of
all permutations of the coordinates that preserves the code.
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Table 5. The Second Higher Weight Enumerator

coefficient of yi weight i
96191865 24

4309395552 26
119312891460 28

2379079500864 30
37327599503964 32

466987648992480 34
4687779244903412 36

37810235197002240 38
244777798274765679 40

1269000323938260672 42
5251816390965277320 44

17262594429823645056 46
44763003632389491540 48

The number of codes that are equivalent to a binary code C is n!
|Aut(C)| . If a

Type II [72, 36, 16] code exists then there are two possible explanation as to why it
is difficult to find. The first is that |Aut(C)| is very large and hence there are very
few codes equivalent to the code to find. The second is that |Aut(C)| is very small
and even though there are many equivalent copies of the code it remains hard to
find because its structure is not interesting.

Several results about the automorphism group are known. In [19], it was shown
23 is the largest odd prime dividing the order of the automorphism group of this
code. In [65], it was shown that 23 also does not divide the order and 11 was
eliminated in [41]. Hence the only possible primes that remained that could divide
the order of the automorphism group of a putative [72, 36, 16] Type II code were
2, 3, 5 and 7. From the papers [9], [10],[59],[63], and [77], it is known that the
order of the automorphism group is either 5 or divides 24. In [7], is was shown that
any automorphism of order 2 cannot have any fixed points.

The following Open Problem is certainly folklore.

Open Question 7.6. Show that the automorphism group of a putative [72, 36, 16]
Type II code is trivial.

Recently, it was proved that the code, if it exists, cannot be Z4−linear [42].
Another technique used to study this problem is the theory of designs. Using

the Assmus-Mattson theorem it follows that if the code exists, then 5-(72, 16, 78)
designs exist coming from the supports of the minimum weight vectors. One could
show that the code does not exist by showing that this design does not exist.

The more general version of this question is the following.

Open Question 7.7. For which k does there exists a doubly-even self-dual
binary [24k, 12k, 4k + 4] code?

As before we have the following theorem which gives an equivalent open problem
of finding the smaller code.

Theorem 7.8. The existence of a Type II [24k, 12k, 4k + 4] Type II code is
equivalent to the existence of a Type I [24k − 2, 12k − 1, 4k + 2] Type I code.

8. Codes and Lattices

In this section, we shall describe some open questions in the relationship be-
tween codes and lattices. Specifically, the open questions ask about extremal self-
dual codes over rings that can be used to construct extremal unimodular lattices.
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The Euclidean weight wtE(x) of a vector in Z
n
2k (x1, x2, . . . , xn) in Z

n
2k is∑n

i=1 min{x2
i , (2k − xi)

2}. The following is shown in [2].

Theorem 8.1. Suppose that C is a self-dual code over Z2k which has the prop-
erty that every Euclidean weight is a multiple of a positive integer c. Then the
largest positive integer c is either 2k or 4k.

A self-dual code over Z2k where every vector has weight a multiple of 4k is said
to be Type II, otherwise it is said to be Type I.

Let Rn be an n-dimensional Euclidean space with the standard inner product.
An n-dimensional lattice Λ in R

n is a free Z-module spanned by n linearly inde-
pendent vectors v1,v2, . . . ,vn. A matrix whose rows are the vectors v1, . . . ,vn is
called a generator matrix G of the lattice Λ. The fundamental volume V (Λ) of Λ is
| detG|. The dual lattice Λ∗ is given by Λ∗ = {v ∈ R

n | v ·w ∈ Z for all w ∈ Λ}.
We say that a lattice Λ is integral if Λ ⊆ Λ∗ and that an integral lattice with
detΛ = 1 (or Λ = Λ∗) is unimodular. If the norm v · v is an even integer for all
v ∈ Λ, then Λ is said to be even. Unimodular lattices which are not even are called
odd. The minimum norm of Λ is the smallest norm among all nonzero vectors of
Λ.

It is well known that except for n = 23, the minimum norm of a unimodular
lattice of length n is bounded above by 2⌊ n

24⌋+ 2.
The following is proven in [2].

Theorem 8.2. Let ρ be a map from Z2k to Z sending 0, 1, . . . , k to 0, 1, . . . , k
and k+1, . . . , 2k−1 to 1−k, . . . ,−1, respectively. If C is a self-dual code of length
n over Z2k, then the lattice

Λ(C) =
1√
2k

{ρ(C) + 2kZn},

is an n-dimensional unimodular lattice, where ρ(C) = {(ρ(c1), . . . , ρ(cn))|(c1, . . . , cn)
∈ C}. The minimum norm is min{2k, dE/2k} where dE is the minimum Euclidean
weight of C. Moreover, if C is Type II then the lattice Λ(C) is an even unimodular
lattice.

In [59], G. Nebe solves the existence of a unimodular lattice of length 72.
Harada et al, [52], finds a Type II code of length 72 over Z8 with minimum Eu-
clidean weight 64. The existence of this code implies the existence of an extremal
Type II lattice of dimension 72.

Open Question 8.3. In length n, a multiple of 8, find a Type II self-dual code
over Z2k, 2k ≥ 2s + 2 such that dE

2k = 2s + 2. Such an extremal code will give an
extremal lattice using Theorem 8.2.

The question is solved for n ≤ 72 in [52]. The next case would be to find a Z16

code with dE = 160. This would given an extremal lattice at length 96.
In [4], the following conjecture is made, motivated by the analysis of the Gauss-

ian wiretap channel.

The secrecy ratio of a lattice L is the ratio rL(y) =
θZn (y)
θL(y) , where the theta

series is defined as
θL(y) =

∑

x∈L

qx.x,

with q = exp(−πy).
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Open Question 8.4. If L is a unimodular lattice prove that rL(y) is unimodal
for y ≥ 0 with a maximum in y = 1.

The motivation for this conjecture besides extensive numerical evidence is the
symmetry rL(y) = rL(1/y), an immediate consequence of the Poisson-Jacobi for-
mula. The Conjecture is proved in many special cases like e.g.

• unimodular lattices in dimension ≤ 23 [55],
• even unimodular lattices in dimension ≤ 72 [30],
• lattices obtained by Construction A from Type II codes of length ≤ 40
[64].

9. Self-Dual Codes

In this section, we shall list several open problems relating to self-dual codes.
The classification of self-dual codes (especially binary self-dual codes) has been
one of the major areas of coding theory for decades. Numerous papers have been
written on their classification. We shall state some problems that remain open in
this area.

The following problem concerns the extremal length 48 Type II code described
earlier.

Open Question 9.1. Prove without a lengthy computer search that a Type II
[48, 24, 12] code is unique (i.e., equivalent to the q48). Prove or disprove that q48 is
a unique [48, 24, 12] code.

We do know that the only Type II [48, 24, 12] code with an automorphism of odd
order is equivalent to q48, [40]. Using an exhaustive computer search, Houghten,
Lam, Thiel and Parker [39] showed that q48 is the only [48, 24, 12] Type II code.

The next question concerns a gap in the known optimal self-dual codes.

Open Question 9.2. Does there exist a Type I [56, 28, 12] code?

The highest minimum distances of self-dual codes of lengths up to 68 are known
except n = 56.

Only one weight enumerator exists:

W56(y) = 1 + 4606y12 + 45, 056y14 + 306, 922y16 + · · ·
There exist at least five Type II [56, 28, 12] codes from Hadamard matrices of

order 28 and at least one thousand such codes. The weight enumerator is

W = 1 + 8190y12 + 622, 314y16 + 11, 699, 688y20 + · · ·
We shall discuss some open question regarding extremal self-dual codes of

length 48 and related codes.
There are two possible weight enumerators W48,1 and W48,2 for extremal singly-

even self-dual [48, 24, 10] codes. Namely,

W48,1 = 1 + 704y10 + 8976y12 + 56896y14 + · · · ,
S48,1 = y4 + 44y8 + 17021y12 + · · · ,
W48,2 = 1 + 768y10 + 8592y12 + 57600y14 + · · · ,
S48,2 = 54y8 + 16976y12 + · · ·

Gulliver-Harada-Kim [35] constructed ten inequivalent extremal singly-even self-
dual [48, 24, 10] codes with weight enumeratorW48,1. Harada-Kitazume-Munemasa-
Venkov [56] showed that there are exactly ten inequivalent extremal singly-even
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self-dual [48, 24, 10] codes with weight enumerator W48,1. The extended quadratic
residue code of length 48 has exactly 74 inequivalent extremal singly-even self-
dual [48, 24, 10] neighbors [56]. This will imply that there are at least 64 singly-
even self-dual [48, 24, 10] codes with weight enumerator W48,2. There exists an
extremal singly even self-dual [48, 24, 10] code with weight enumerator W48,2, nei-
ther of whose doubly-even self-dual neighbors is an extremal doubly even self-dual
[48, 24, 12] code [56].

Open Question 9.3. Classify all extremal singly-even self-dual [48, 24, 10]
codes with weight enumerator W48,2.

10. Decoding Algorithms

One of the most important aspects of applied coding theory is finding an effi-
cient algorithm to decode vectors. Namely, how do you take a received vector and
use the algebraic structure of the code to determine the error vector and in so doing
the sent vector.

Open Question 10.1. Find an efficient decoding algorithm for a family of
self-dual codes or for all self-dual codes.

It is rather mysterious that self-dual codes do not have a general decoding
algorithm. Efficient decoding algorithms exist for the binary Golay [24, 12, 8] code,
four of the five Type II [32, 16, 8] codes, and the Type II [48, 24, 12] code q48.

A similar question exists for another important class of codes, namely quasi-
cyclic codes. A cyclic code is a code C such that if v = (v1, . . . , vn) ∈ C then
σ(v) = (vn, v1, . . . , vn−1) ∈ C. A code C is quasi-cyclic of index k if v ∈ C implies
σk(v) ∈ C. Cyclic and quasi-cyclic codes are widely studied families of codes.

Open Question 10.2. Give a universal decoding algorithm for quasi-cyclic
codes.

11. Bounds on Codes

One of the most useful and important aspects of coding is a bound placed on
the minimum distance of a code. Specifically, these well known bounds aid in the
search for optimal codes which is the fundamental question of coding theory.

Let Aq(n, d) be the maximum size of a q-ary code C of length n and minimum
distance n. Then

Aq(n, d)

⎛
⎝

d−1∑

j=0

(
n
j

)
(q − 1)j

⎞
⎠ ≥ qn.

This is known as the Varshamov-Gilbert bound.
The linear programming bound puts restrictions on the maximum dimension

of a code given the length and minimum distance using the MacWilliams relations.

Open Question 11.1. Bridge the gap between Varshamov-Gilbert (VG) and
Linear Programming (LP) bound.

It was shown by Samorodnitsky [67] that the best bound the LP can give is at
least the average of the bound of the four americans also known as the JPL bound
[44], and of the Varshamov-Gilbert bound. But it was conjectured by Barg and
Jaffe [12], based on extensive computations, that the best LP bound for large n is
the JPL bound.
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Open Question 11.2. Is the VG bound tight for q = 2? It is not for q > 49
thanks to AG codes and the TVZ bound [72].

It is a folklore theorem that almost all codes are on VG.

Open Question 11.3. Is there any BCH bound for cyclic Z4-codes?

The arguments to bound below the Lee distance of codes in [37] are very ad
hoc. An obvious approach is to apply the BCH bound to the residue code but
that is insufficient in the interesting cases, i.e. when the Hensel lift increases the
Hamming distance.

12. Covering Radius

The sphere packing bound is as follows. If C is a code over an alphabet of size
p with minimum weight 2t+ 1 then

(17) |C|
(

t∑

s=0

C(n, s)(p− 1)s

)
≤ pn.

When this bound is met the code is said to be perfect. The Hamming and Golay
codes are well known examples of perfect codes.

The covering radius of a code is the smallest integer t such that balls of radii t
centered about codewords cover the ambient space. The covering radius is always
more than the error correcting capacity with equality if and only if the code is
perfect. All perfect linear codes over fields are known.

The first two open questions concerns perfect codes.

Open Question 12.1. Are there perfect codes over non prime power size al-
phabets? (Folklore).

A great deal of work has been done on the prime power case, since that is the
size of finite fields, however much less has been done in completing the study of
perfect codes over non prime power alphabets.

Open Question 12.2. Classify all perfect nonlinear single error correcting
codes [18].

The next two questions are concerned with the smallest size a code can be with
given parameters for a given covering radius. The smallest dimension of a linear
code of length n and covering radius R is denoted by k(n,R). The smallest size of
a covering code of length n and covering radius R is denoted by K(n,R).

Open Question 12.3. Is K(n+ 2, R+ 1) ≤ K(n,R) for all R �= n?[18].

Open Question 12.4. Is k(n+ 2, R+ 1) ≤ k(n,R) for all R �= n?[18].

These questions are obviously related. However, as in most coding questions,
allowing codes to be non-linear complicates the question considerably.

For a definition of normal see [18].

Open Question 12.5. Are all linear codes normal? See [18] for details.

The next questions concern determining the covering radius for various impor-
tant families of codes.
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Open Question 12.6. Find the covering radius of the first order Reed-Muller
code R(1,m) for m odd [57]. The problem for even m is solved by the existence of
bent functions.

Open Question 12.7. Find the exact covering radius of Km (Kerdock code)
described in [37].

Lower and upper bounds, based on respectively, the supercode lemma and a
moment method can be found in [14].

Let Rm denote the binary repetition code of length m.

Open Question 12.8. What is the covering radius of (Rm ⊗Rm)⊥?

This question is related to the Gale Berlekamp game [18, Example 1.2.7], which
is an array ofm bym lightbulbs with one switch per row and per column. The aim of
the game is to find the brightest configuration over all possible initial configurations.
As an optimization problem it was shown to be NP-hard in [66]. As a hardware
model (m = 10) it could still be found in Bell Labs in the early nineties. The
solution for m = 10 was claimed to be 34 in [32], and proved to be 35 in [15]
where the exact values up to 12 are computed. This problem is also related to the
covering radius of cocycle codes of graphs [6,70].

13. Cyclic Codes

There is a longstanding question which is to know whether the class of cyclic
codes is asymptotically good. Let us recall that a sequence of linear binary [ni, ki, di]
codes Ci is asymptotically good if both

lim inf
i→∞

ki
ni

> 0,

and

lim inf
i→∞

di
ni

> 0.

Although it is known that the class of BCH codes is not asymptotically good
[13,43], (see [57] for a proof), we do not know if there is a family of asymptotically
good cyclic codes.

Still on the negative side, Castagnoli [16] has shown that, if the length ni

goes to infinity with i while having a fixed set of prime factors, then there is no
asymptotically good family of codes Ci of length ni. Other negative results are in
[5]. Known partial positive results are due to Kasami [48], for quasicyclic codes.
Bazzi-Mitter [3] have shown that there exists an asymptotically good family of
linear codes which are very close to cyclic codes. Also Willems and Martinez-Perez
[58] have shown that if there exists an asymptotically good family of cyclic codes,
then there exists an asymptotically good family of cyclic codes with with prime
lengths. So, although some progress has been achieved, the question is still open.

Open Question 13.1. Are cyclic codes asymptotically good?

14. Optimal 2-error Correcting Codes

This question in this section can be found in [46, Open Problem 1]. The
Hamming codes give, in some sense, the best 1-error-correcting codes (see Niven
[62]). In particular, if n = (qr−1)/(q−1) then there is no shorter 1-error-correcting
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code of dimension k = n− r. However, for e > 1 the best e-error-correcting codes
of length n is unknown for large n, provided we assume e is fixed1, e.g., e = 2. The
search for the best 2-error correcting codes lead to the discovery of the BCH codes
around 1960. However, the BCH codes are not known, in general, to provide all
the optimal 2-error correcting codes.

Open Question 14.1. Find the best linear 2-error-correcting code of length
n.

This is also related to “Ulam’s game” (see [74] and [62]) or “searching with
lies.” There is an extensive literature on this topic. See for example the two sections
on searching with lies in [47].

15. Virtually Self-Dual Weight Enumerator

This section is about virtually self-dual weight enumerator. See [46, Ch. 3] for
details. A homogeneous polynomial F (x, y) = xn+

∑n
i=1 fix

n−iyi of degree n with
complex coefficients is called a virtual weight enumerator with support supp(F ) =
{0}∪ {i | fi �= 0}. If F (x, y) = xn +

∑n
i=d Aix

n−iyi with Ad �= 0 then we call n the
length of F and d the minimum distance of F . Such an F of even degree satisfying

F (x, y) = F (x+(q−1)y√
q , x−y√

q ), is called a virtually self-dual weight enumerator over

GF (q) (or more generally over a ring of cardinality q) having genus

γ(F ) = n/2 + 1− d.

If b > 1 is an integer and supp(F ) ⊂ bZ then the virtual weight enumerator F is
called b-divisible.

The classification of non-trivial formally self-dual divisible codes into the four
Types has a virtually self-dual weight enumerator analog. In other words, the
Gleason-Pierce theorem has a strengthening where the hypothesis does not require
the existence of a code, only a form with certain invariance properties.

Theorem 15.1. (Gleason-Pierce-Turyn) Let F be a b-divisible virtually self-
dual weight enumerator over a ring of cardinality q.

Then either

I. q = b = 2,
II. q = 2, b = 4,
III. q = b = 3,
IV. q = 4, b = 2,
V. q is arbitrary, b = 2, and F (x, y) = (x2 + (q − 1)y2)n/2.

For examples of Type IV codes over the four rings of order four see [28].
A virtual weight enumerator F is formally identified with an object we call

a virtual code C subject only to the following condition: we formally extend the
definition of C �−→ AC to all virtual codes by AC = F . Of course, if F is the
weight enumerator of an actual code, C ′ say, then we have AC = F = AC′ . In
other words, a virtual code is only well-defined up to formal equivalence. If C1 and
C2 are virtual codes then we define C1 + C2 to be the virtual code associated to
the virtual weight enumerator AC1

(x, y) +AC2
(x, y).

1If e > 1 is allowed to vary with n then more can be said, but we omit that case.
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The following question [46, Open Problem 18.] is really more a question of the
classification of self-dual codes than of virtually self-dual weight enumerators. An
excellent reference is the book [60].

Open Question 15.2. Given a virtually self-dual weight enumerator F , find
necessary and sufficient conditions (short of enumeration) which determine whether
or not F arises as the weight enumerator of some self-dual code C.
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