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ABSTRACT

We give one more proof of the first linear programming bound for binary

codes, following the line of work initiated by Friedman and Tillich [9].

The new argument is somewhat similar to the one given in [24], but we

believe it to be both simpler and more intuitive. Moreover, it provides

the following ‘geometric’ explanation for the bound. A binary code with

minimal distance δn is small because the projections of the characteristic

functions of its elemes on the subspace spanned by the Walsh–Fourier

characters of weight up to ( 1
2
−√

δ(1 − δ)) ·n are essentially independent.

Hence the cardinality of the code is bounded by the dimension of the

subspace.

We present two conjectures, suggested by the new proof, one for linear

and one for general binary codes which, if true, would lead to an improve-

ment of the first linear programming bound. The conjecture for linear

codes is related to and is influenced by conjectures of H̊astad and of Kalai

and Linial. We verify the conjectures for the (simple) cases of random

linear codes and general random codes.

Received March 10, 2022 and in revised form October 21, 2022

639



640 A.SAMORODNITSKY Isr. J. Math.

1. Introduction

A binary error-correcting code C of length n and minimal distance d is a subset

of the Hamming cube {0, 1}n in which the distance between any two distinct

points is at least d. Let A(n, d) be the maximal size of such a code. In this paper

we are interested in the case in which the distance d is linear in the length n

of the code, and we let n go to infinity. In this case A(n, d) is known (see,

e.g., [18]) to grow exponentially in n, and we consider the quantity

R(δ) = lim sup
n→∞

1

n
log2 A(n, �δn�),

also known as the asymptotic maximal rate of the code with relative dis-

tance δ, for 0 ≤ δ ≤ 1
2 .

The best known upper bounds on R(δ) were obtained in [22] using the linear

programming relaxation, constructed in [7], of the combinatorial problem of

bounding A(n, d). While the precise value of the linear program of [7] is still

unknown, there is convincing numerical evidence [5] that on the exponential

scale the bounds of [22] are the best possible to derive from this program. It

follows that in order to improve these bounds we need either to augment the

linear program of [7], or to look for a different way to prove the bounds of [22].

The first approach was adopted by [26] (see also, e.g., [3]), who suggested a

positive semidefinite relaxation of the problem to bound A(n, d), augmenting

the linear programming relaxation of [7] by studying the geometry of a code in

more detail (see also the discussion before Proposition 1.8 below). The second

approach was taken by [9], where the first linear programming bound for linear

binary codes was proved by a different and a more direct argument. Given

a linear code C, that is, a linear subspace of the Hamming cube, [9] proved

comparison theorems (adapting ideas from Riemannian geometry to the discrete

setting) between two metric spaces defined by the two Cayley graphs: The

Hamming cube {0, 1}n and the Cayley graph of the quotient {0, 1}n/C⊥ with

respect to the set of generators given by the standard basis of {0, 1}n. The

key observations were that the metric balls in {0, 1}n grow faster than their

counterparts in {0, 1}n/C⊥, while their eigenvalues (the eigenvalue of a set is

the maximal eigenvalue of the adjacency matrix of the graph restricted to this

set) are bounded from above by these of their counterparts.
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Following [9], where the importance of working with Hamming balls and

their eigenvalues was established, the expediency of working with the maximal

eigenfunctions of Hamming balls was observed in [23, 24]. It was, in effect,

shown that, given any nonnegative function f on {0, 1}n with a small support,

such that the adjacency matrix of the Hamming cube acts on f by multiplying

it pointwise by a large factor, one can obtain an upper bound on the cardinality

of error-correcting codes, whose applicability will depend on the cardinality of

the support of f and on the size of the multiplying factor. Using the maximal

eigenfunctions of Hamming balls of different radii, with their corresponding

parameters, led to a simple proof of the first linear programming bound for

linear codes, which was then extended to prove the bound for general binary

codes as well. One appealing feature of the argument for linear codes was that it

established the following ‘covering’ explanation for the first linear programming

bound (stated explicitly in [24] and contained implicitly in [9]). A linear code C

with minimal distance d is small, because its dual C⊥ is large, in the following

sense: A union of Hamming balls of radius r = r(d) centered at the points

of C⊥ covers almost the whole space. This implies that, up to negligible errors,

|C| ≤ |B|, where B is a ball of radius r. Unfortunately, the extension of the

argument to general binary codes seemed to allow no such natural geometric

interpretation.

In this paper we give another proof of the first linear programming bound

for general binary codes. This proof is somewhat similar to the one given in

[24], but we believe it to be both simpler and more satisfactory, in that it pro-

vides a ‘geometric’ explanation for the bound. We show that a binary code

with minimal distance δn is small because the projections of the characteristic

functions of its elements on the subspace spanned by the Walsh–Fourier charac-

ters of weight up to (1
2 −√

δ(1 − δ)) · n are essentially independent. Hence the

cardinality of the code is essentially bounded by the dimension of the subspace.

Let 0 ≤ r ≤ n, and let Λr be the orthogonal projection on the span of the

Walsh–Fourier characters of weight at most r (see Section 1.3 for background

and definitions of relevant notions). For x ∈ {0, 1}n, let δx be the character-

istic function of the point x. Let 〈v1, . . . , vN 〉 denote the linear span of the

vectors v1, . . . , vN . We prove the following claim.
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Theorem 1.1: Let 0 < δ < 1
2 . There exists a function r = rδ : N → N,

with r(n) = (12 −√
δ(1− δ)) · n + o(n), such that for any code C of length n

and minimal distance d = �δn� we have

dim(〈{Λr(n)δx}x∈C〉) ≥ 1

2d
· |C|.

Let us make several comments about this result.

– It follows that |C| ≤ 2d ·∑r(n)
k=0

(
n
k

)
. By the known exponential estimates for

binomial coefficients (see (4) below) this implies the first linear programming

bound on the asymptotic rate function:

R(δ) ≤ H(
1

2
−
√
δ(1 − δ)),

where H(x) is the binary entropy function.

– If C is a linear code, then it is not hard to see that

dim(〈{Λrδx}x∈C〉) =
|⋃z∈C⊥(z +B(r))|

|C⊥| ,

where B(r) is the Hamming ball of radius r around zero. Hence, for linear codes

the claim of the theorem reduces to saying that the union of Hamming balls

of radius r(n) centered at the points of C⊥ covers at least 1
2d -fraction of the

space. In this sense, the claim of the theorem is a proper generalization of the

covering argument for linear codes given in [24].

– The span Vr of the Walsh–Fourier characters of weight at most r is the

space spanned by the eigenfunctions of the Laplacian operator on {0, 1}n cor-

responding to its smallest eigenvalues 0, 2, 4, . . . , 2r. In some metric spaces X

the spaces Vr spanned by the eigenfunctions of the Laplacian corresponding to

its lowest eigenvalues are the spaces of the (r-)‘simple’ functions on X . For

instance, if X is the Hamming cube {0, 1}n, or the Euclidean sphere Sn−1,

then Vr is the space of the real multivariate polynomials of degree at most r

on Rn restricted to either {0, 1}n or Sn−1. One can ask for the value of r for

which the space Vr becomes ‘complex’ enough to describe a given distance d in

the ambient space, in the sense that the projection of the characteristic function

of any metric ball of radius d in the space on Vr retains a significant fraction of

its �2 norm. For the Hamming cube {0, 1}n and d = δn, the appropriate value

of r is (12 −√
δ(1− δ)) · n + o(n). (This is closely related to the fact that the

Krawchouk polynomial Kd essentially attains its �2 norm very close to its first

root, but not much before that; see, e.g., (11) and Proposition 2.15 in [16].)
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In other words, roughly speaking, the cardinality of a binary code of minimal

distance d is upper bounded by the dimension of the space Vr spanned by the

‘simple’ eigenfunctions of the Laplacian if r is large enough for the space Vr to

describe distances d in {0, 1}n. Let us remark that this phenomenon can also be

shown to hold if the ambient space is the Hamming sphere (in effect recovering,

via the Bassalygo–Elias inequality, the second linear programming bound

for binary codes), and we believe that it should be possible to show this, by

similar methods, for other symmetric spaces, such as distance regular graphs

or the Euclidean sphere. This seems to be rather intriguing, and we wonder

whether this could be a special case of a more general principle.

– The proof of Theorem 1.1 relies on the existence of a nonnegative function f

on {0, 1}n with a small support (in fact it suffices to require that E f2

E2 f
is large),

such that the adjacency matrix A of the Hamming cube acts on f by multiplying

it pointwise by a large factor. It is not hard to see that any such function can

be used to construct a feasible solution to the dual linear program of [7].1 In

particular, if f is the maximal eigenfunction of a Hamming ball, we (essentially)

recover a solution to this program constructed in [22]. In this sense, this line

of research is subsumed by that of [7] and [22]. In addition, it can be shown

[25] that the best bound one can obtain following this approach is the first

linear programming bound. With that, we believe that this approach leads to

simpler proofs of this bound which provide additional information (we do not

know how to derive the claim of the theorem from the linear program of [7])

and furthermore suggest new possible ways to proceed in order to improve this

bound. In fact, we present two conjectures, suggested by the new proof, one

for linear and one for general binary codes which, if true, would lead to an

improvement of the first linear programming bound. We start with discussing

the conjecture for linear codes.

1.1. Linear codes. Before stating the conjecture, let us mention two related

conjectures that influenced it. Both conjectures posit, in different ways, that

the behavior of a linear code near its minimal weight is highly constrained.

1 Let f ≥ 0 with E f2

E2 f
≥ 2n

s
, so that Af ≥ λf , for some λ ≥ 1. Let

G = (Af) ∗ f − (λ− 1)(f ∗ f). It is easy to see that Ĝ is a feasible solution to the dual

program of [7] for codes with minimal distance d = n−λ+1
2

, and the bound we get from

the linear program is A(n, d) ≤ s.
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The first conjecture, due to Kalai and Linial [13], states that if C ⊆ {0, 1}n is

a linear code with minimal distance d, then the number of codewords of weight d

in C is at most subexponential in n. In fact, they implicitly conjecture more,

namely that there is also a strong upper bound on the number of codewords

of weight close to d. They observe that if this is true, then the first linear

programming bound for linear codes could be improved. This was elucidated

in the subsequent work of [1], where it was shown (among other things) that

a linear code attaining the first linear programming bound must have (up to a

negligible error) as many codewords of some weight close to d as a random code

of the same cardinality.

A weak version of this conjecture, namely that the number of vectors of

weight close to d is exponentially smaller than the cardinality of C (assuming C

is exponentially large, which is the interesting case here), was proved in [19].

However, the full conjecture was shown to be false in [2], where a code of minimal

distance d with exponentially many codewords of weight d was constructed.

The second conjecture is due to H̊astad [11]. It states that for any absolute

constants 0 < α < 1 and k ≥ 1 there exists an absolute constant K = K(α, k),

such that the following is true. Let C be a nice (pseudorandom in some sense)

linear code of length n with minimal distance d ≤ nα. Then for any non-zero

function f on {0, 1}n whose Fourier transform is supported on vectors of weight

at most kd in C we have

(1)
‖f‖4
‖f‖2 ≤ K,

Some comments:

– As pointed out in [11] some precondition on C is necessary. To see this,

let d = �nα�, and let k = 3. Let m = 3d, and let C′ ⊆ {0, 1}m be a linear code

of minimal distance d and dimension linear in m. Add n−m zero coordinates

to each vector in C′, obtaining a code C ⊆ {0, 1}n. Take
f =

∑
x∈C,|x|≤kd

Wx

(here {Wx}x are the Walsh–Fourier characters of {0, 1}n). Then it is easy to

see that f is essentially proportional to the characteristic function of the dual

code C⊥, and in particular ‖f‖4

‖f‖2
is exponential in m.

– The inequality (1) is a Khintchine-type inequality. Recall that Khintchine-

type inequalities establish an upper bound on the ratio of two �p norms for
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functions coming from a certain linear space, typically a space of multivariate

polynomials of a specified degree over a given product space. In particular, the

prototypical Khintchine inequality [14] states that the ratio of �2 and �1 norms

of linear polynomials over the boolean cube {0, 1}n is bounded by an absolute

constant. See [12] for a recent discussion and references.

Our conjecture is in a sense a combination of the two conjectures above in

that it considers the set of vectors in a linear code whose weight is close to the

minimal distance of the code, but it replaces the ‘hard’ cardinality constraint

of [13] by a ‘softer’ analytical constraint of [11].

Conjecture 1.2: Let 0 < δ < 1
2 . Then for

c = c(δ) =
δ(1− 2δ) · log2

(
1
2+

√
δ(1−δ)

1
2−

√
δ(1−δ)

)
16

√
δ(1− δ)

,

there is a positive constant ε0 = ε0(δ) such that for any 0 ≤ ε ≤ ε0 the follow-

ing holds. Let C ⊆ {0, 1}n be a linear code with minimal distance d = �δn�,
let d ≤ i ≤ (1 + ε)d, and let A be the set of vectors of weight i in C. As-

sume A = ∅. Let f be a non-zero function on {0, 1}n whose Fourier transform

is supported on A. Then

(2)
‖f‖4
‖f‖2 ≤ 2cεn+o(n).

Some comments:

– If f is a non-zero function whose Fourier transform is supported on the vectors

of minimal weight in a linear code, we conjecture that the ratio ‖f‖4

‖f‖2
is at most

subexponential in n. Since the ratio of the fourth and the second norm of a

function is upper-bounded by the fourth root of the cardinality of its Fourier

support (see, e.g., Proposition 1.1 in [15]) this conjecture is weaker than the

corresponding conjecture of [13].

– For weights close to minimal, the upper bounds on the ratio of the fourth and

the second norm required in (2) are in general smaller than the explicit bounds

on cardinality required in [1]. On the other hand, the quantity we want to bound

in (2) is smaller, and in general could be much smaller (cf. Proposition 1.4 in

which for i = (1 + ε)d with ε > 0, the set of vectors of weight i in the code is

exponentially large, but the ratio of the moments is bounded by a constant).

In this sense, the two conjectures are incomparable.
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– Conjecture 1.2 and the conjecture of [11] are also incomparable. Apart from

the fact that the two conjectures speak about codes in different regimes (the

conjecture of [11] considers codes with sublinear distance, while we are interested

in codes with linear distance), the conclusion of Conjecture 1.2 has to hold for all

linear codes, and not only for the ‘nice’ ones. On the other hand, the conclusion

itself is much weaker, while the conditions under which it is supposed to hold

are stronger.

We claim that if Conjecture 1.2 holds, then the first linear programming

bound for binary linear codes can be improved. In fact, it suffices to prove the

conjecture only for symmetric functions f . Here we call function f symmetric

if for any point x in its Fourier support, f̂(x) depends only on |x|. Let AL(n, d)

be the maximal size of a linear code of length n and distance d. Let

RL(δ) = lim sup
n→∞

1

n
log2 AL(n, �δn�).

Proposition 1.3: Assume that Conjecture 1.2 holds for symmetric functions f .

Then for all 0 < δ < 1
2 we have

RL(δ) ≤ H
(1
2
−
√
δ(1 − δ)

)
− θL(δ),

where θL(δ) > 0 for all 0 < δ < 1
2 .

Some comments:

– In the notation of Conjecture 1.2, if f is symmetric, then f̂ is constant on A

and we may assume, without loss of generality, that f =
∑

a∈A Wa. With that,

this special case essentially captures the complexity of the conjecture in full

generality. In fact, it is known (see e.g., Proposition1.1 in [15]) that for any

subset A ⊆ {0, 1}n the maximum of the ratio ‖f‖4

‖f‖2
over non-zero functions f

whose Fourier transform is supported on A is attained, up to a polylogarithmic

in |A| factor, on the characteristic function of some subset B ⊆ A. Hence,

it would suffice to prove the conjecture for the linear code C′ spanned by the

vectors in B and for the appropriate symmetric function.

– The fourth and the second norm in (2) may be replaced by any two norms q>p,

changing the value of the constant c(δ) accordingly.

We show that Conjecture 1.2 holds (in a strong sense) for random linear

codes. A random linear code C of length n and (prescribed) dimension k is

chosen as follows (see e.g., [4] for this and for properties of random linear codes):

choose k vectors v1, . . . , vk independently at random from {0, 1}n and take C to
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be the linear span of these vectors. It is convenient to define parameters in the

following claim in terms of the dimension rather than the minimal distance of

a code. This is justified by the following fact. Let 0 < R < 1. A random linear

code of dimension k = �Rn� has minimal distance H−1(1 − R) · n± o(n) with

probability tending to 1 with n. So in case of random linear codes we may speak

about the dimension of the code and its minimal distance interchangeably.

Proposition 1.4: Let 0 < R < 1. There exists a positive constant K = K(R)

and a positive constant ε0 = ε0(R) such that the following holds with probability

tending to 1 with n for a random linear code C ⊆ {0, 1}n of dimension �Rn�.
Let d be the minimal distance of C, let d ≤ i ≤ (1 + ε0)d, and let A be the set

of vectors of weight i in C. Assume A = ∅. Let f be a function whose Fourier

transform is supported on A. Then

‖f‖4
‖f‖2 ≤ K.

1.2. General codes. We start with some definitions and a preliminary dis-

cussion.

Definition 1.5: For a binary code C and 1 ≤ i ≤ n let G(C, i), the distance-i

graph of C, be the graph with |C| vertices indexed by the elements of C, with

two vertices connected by an edge iff the corresponding elements of C are at

distance i from each other.

If C is a linear code, then G(C, i) is a regular graph, for any 1 ≤ i ≤ n.

For a general code C the graphs G(C, i) could be highly irregular, which will

lead to difficulties (see below) in formulating a conjecture for general codes

analogous to Conjecture 1.2, which is not disproved by a simple counterexample.

Consequently, we will need to introduce additional constraints in the conjecture

below. Specifically, we will require the graphs G(C, i) for i close to the minimal

distance of the code C to behave somewhat similarly to regular graphs. In a

regular graph G, the density of edges of any induced subgraph G is bounded

by that of the whole graph. We will call a graph t-balanced if it shares this

property of regular graphs, up to a multiplicative factor of t.
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Definition 1.6: A non-empty graph G = (V,E) will be called t-balanced, for

some t ≥ 1, if the density of edges in any of its induced subgraphs is at most t

times the density of edges in G. That is, denoting by E(X,X) the set of edges

from a subset X of vertices to itself, for any X ⊆ V we have

|E(X,X)|
|X | ≤ t · |E|

|V | .

We can now state our conjecture for general graphs.

Conjecture 1.7: Let 0 < δ < 1
2 . Then for

c = c(δ) =
δ(1− 2δ) · log2

(
1
2+

√
δ(1−δ)

1
2−

√
δ(1−δ)

)
16

√
δ(1− δ)

,

there is a positive constant ε0 = ε0(δ), such that for any 0 ≤ ε ≤ ε0 the

following holds. Let C ⊆ {0, 1}n be a code with minimal distance d = �δn�,
let d ≤ i ≤ (1 + ε)d, and let G = G(C, i) be the distance-i graph of G. Assume

that G is t-balanced, for t = t(n) = 2o(n). Let λ ∈ RC be the vector of

eigenvalues of G, viewed as a function on C, where we endow C with the unform

probability measure. Then

(3)
‖λ‖4
‖λ‖2 ≤ 2cεn+o(n).

Let us make several comments about this conjecture.

– If C is a linear code, then G = G(C, i) is a regular graph, and hence it is

1-balanced. Furthermore, if A is the set of vectors of weight i in C, then it is

easy to see that the distribution of the eigenvalues of G on C is the same as

the distribution of the function f =
∑

a∈A Wa on {0, 1}n (see also the discus-

sion in the proof of Proposition 1.3 below). Hence Conjecture 1.7 generalizes

Conjecture 1.2 for symmetric functions.

– Some additional condition on G = G(C, i) is necessary. Indeed, let C be

an exponentially large code with minimal distance d which is linear in n.

Let k = �d/3�. Assume, without loss of generality, that k is even. Choose a

point x ∈ C, and choose two points y, z ∈ {0, 1}n both at distance k from x,

such that the distance between y and z is also k (clearly such points exist).

Add y and z to C, obtaining a new code C ′ with minimal distance k. It is easy

to see that the graph G(C, k) has only 3 non-zero eigenvalues, and hence

‖λ‖4
‖λ‖2 ≥ Ω(|C| 14 ).
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– Recall that if λ is the vector of eigenvalues of a graph G, then
∑

i λ
k
i equals

to the number of closed walks of length k in G (see, e.g, Lemma 2.5 in [6]).

Hence Conjecture 1.7 can be informally restated as follows: Let C be a binary

code of length n and distance d. Let i be close to d and assume that the

graph G(C, i) is 2o(n)-balanced (which always holds if C is linear). Then the

number of ‘rhombic’ 4-tuples (x, y, z, w) ∈ C4 with

|y − z| = |z − y| = |w − z| = |x− w| = i

is not much larger than |C|B2
i , where

Bi =
1

|C| |{(x, y) ∈ C × C, |x− y| = i}

is the ith component of the distance distribution vector of C.

– Continuing from the preceding comment, we recall that the distance distri-

bution vector (B0, . . . , Bn) of a code is a central object of study in the linear

programming approach of [7]. The positive semidefinite approach of [26] (see

also [3]) studies the geometry of a code in more detail, collecting the statistics of

the possible
(
k
2

)
-tuples of pairwise inner distances in all k-tuples of elements of a

code, for some k ≥ 2. In particular, statistics of inner distances of quadruples of

codewords are studied in [10]. In this sense Conjecture 1.7 points out a possible

connection between the two above-mentioned approaches whose eventual goal

is to improve the linear programming bounds

We claim that if Conjecture 1.7 holds, then the first linear programming

bound for binary codes can be improved.

Proposition 1.8: Assume that Conjecture 1.7 holds. Then for all 0 < δ < 1
2

we have

R(δ) ≤ H
(1
2
−
√
δ(1− δ)

)
− θ(δ),

where θ(δ) > 0 for all 0 < δ < 1
2 .

We show that Conjecture 1.7 holds (in a strong sense) for random codes.

See Section 1.3 for more details on the (standard) model of random codes that

we use. Let 0 < R < 1. A random code of cardinality 2Rn has minimal

distance H−1(1 − R) · n ± o(n) with probability tending to 1 with n. So in

case of random codes we may speak about the cardinality of the code and its

minimal distance interchangeably.



650 A.SAMORODNITSKY Isr. J. Math.

Proposition 1.9: Let 0 < R < 1. There exists a positive constant K = K(R)

and a positive constant ε0 = ε0(R) such that the following holds with probability

tending to 1 with n for a random code C ⊆ {0, 1}n of cardinality 2Rn. Let d

be the minimal distance of C, let d ≤ i ≤ (1 + ε0)d, and let G = G(C, i) be the

distance-i graph of G. Let λ ∈ RC be the vector of eigenvalues of G, viewed

as a function on C, where we endow C with the unform probability measure.

Then
‖λ‖4
‖λ‖2 ≤ K.

Organization of this paper. The remainder of this paper is organized as fol-

lows. We describe the relevant notions and provide some additional background

in the next subsection. Theorem 1.1 is proved in Section 2. Propositions 1.3

and 1.8 are proved in Section 3. Propositions 1.4 and 1.9 are proved in Section 4.

1.3. Background, definitions, and notation. We view {0, 1}n as a metric

space, with the Hamming distance between x, y ∈ {0, 1}n given by

|x− y| = |{i : xi = yi}|.
The Hamming weight of x ∈ {0, 1}n is

|x| = |{i : xi = 1}|.
For x, y ∈ {0, 1}n, we write x + y for the modulo 2 sum of x and y. Note that

the weight |x+ y| of x+ y equals the distance |x− y| between x and y (we will

use this simple observation several times below). The Hamming sphere of

radius r centered at x is the set

S(x, r) = {y ∈ {0, 1}n : |x− y| = r}.
The Hamming ball of radius r centered at x is the set

B(x, r) = {y ∈ {0, 1}n : |x− y| ≤ r}.
Clearly, for any x ∈ {0, 1}n and 0 ≤ r ≤ n we have

|S(x, r)| =
(
n

r

)
and|B(x, r)| =

r∑
k=0

(
n

k

)
.
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Let

H(t) = t log2

(1
t

)
+ (1− t) log2

( 1

1− t

)
be the binary entropy function. We will make use of the following estimate (see,

e.g., Theorem1.4.5. in [20]): For x ∈ {0, 1}n and 0 < r ≤ n
2

(4) |B(x, r)| ≤ 2H( r
n )·n.

The asymptotic notation will always refer to the behavior of a function of an

integer argument n when n tends to infinity (unless specifically stated other-

wise). The O, Ω and Θ asymptotic notation always hides absolute constants.

We write a ∈ b± ε as a shorthand for b− ε ≤ a ≤ b+ ε.

1.3.1. Fourier analysis, Krawtchouk polynomials, and spectral projections. We

recall some basic notions in Fourier analysis on the boolean cube (see, e.g., [8,

Section1.5]). For α ∈ {0, 1}n, define the Walsh–Fourier characterWα on {0, 1}n
by setting

Wα(y) = (−1)
∑

αiyi for all y ∈ {0, 1}n.
The weight of the character Wα is the Hamming weight |α| of α. The charac-

ters {Wα}α∈{0,1}n form an orthonormal basis in the space of real-valued func-

tions on {0, 1}n, under the inner product 〈f, g〉 = 1
2n

∑
x∈{0,1}n f(x)g(x). The

expansion f =
∑

α∈{0,1}n f̂(α)Wα defines the Fourier transform f̂ of f . Explic-

itly,

f̂(α) = 〈f,Wα〉 = 1

2n

∑
x∈{0,1}n

f(x)Wα(x).

It will be convenient to denote by

〈f̂ , ĝ〉F :=
∑

α∈{0,1}n

f̂(α)ĝ(α)

the inner product of functions in the “Fourier domain”. Note that this inner

product is not normalized.

The Parseval identity states that

〈f, g〉 =
∑

α∈{0,1}n

f̂(α)ĝ(α) = 〈f̂ , ĝ〉F .

The convolution of f and g is defined by

(f ∗ g)(x) = 1

2n

∑
y∈{0,1}n

f(y)g(x+ y).
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The convolution transforms to dot product: f̂ ∗ g = f̂ · ĝ. The convolution

operator is commutative and associative. We will use one additional simple

fact. Let A be the adjacency matrix of {0, 1}n. Then Âf(α) = (n− 2|α|)f̂(α)
(in fact, note that A is a symmetric matrix, and it is easy to verify that Wα is

an eigenvector of A with eigenvalue n− 2|α|).

Krawtchouk polynomials. (see, e.g., [17]). For 0 ≤ s ≤ n, let Fs be the sum of

all Walsh–Fourier characters of weight s, that is Fs =
∑

|α|=s Wα. Note that Fs

is the Fourier transform of 2n · Ls, where Ls is the characteristic function of

the Hamming sphere of radius s around 0. It is easy to see that Fs(x) depends

only on the Hamming weight |x| of x, and it can be viewed as a univariate

function on the integer points 0, . . . , n, given by the restriction to {0, . . . , n} of

the univariate polynomial

Ks =
s∑

k=0

(−1)k
(
x

k

)(
n− x

s− k

)

of degree s, that is, Fs(x)=Ks(|x|). The polynomialKs is the s
th Krawtchouk

polynomial. Abusing notation, we will also call Fs the sth Krawtchouk poly-

nomial, and write Ks for Fs when the context is clear.

Spectral projections. For 0 ≤ r ≤ n we define Λr to be the orthogonal projection

to the subspace spanned by Walsh–Fourier characters of weight at most r. That

is, for a function f on {0, 1}n, and 0 ≤ r ≤ n, we have

Λrf =
∑
|α|≤r

f̂(α)Wα.

1.3.2. Bounds on the asymptotic rate function. The best known lower bound on

R(δ) is the Gilbert–Varhsamov bound R(δ) ≥ 1−H(δ) (see, e.g., [21]). The

existence of codes asymptotically attaining this bound is demonstrated, e.g., by

random codes (see Section 1.3.3). The best known upper bounds on R(δ) are the

linear programming bounds [22], obtained via the linear programming approach

of [7]. To be more specific, [7] suggested a systematic approach to obtaining

a linear programming relaxation of the combinatorial problem of bounding the

cardinality of an error-correcting code with a given minimal distance (equiva-

lently, of a metric ball packing with a given radius of a ball) in a metric space

with a large group of isometries and, more generally, in an association scheme.

In [22] tools from the theory of orthogonal polynomials were used to construct
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good feasible solutions to the linear programs constructed in [7] for the Ham-

ming cube and the Hamming sphere. This led to two families of bounds. The

first linear programing bound is obtained by solving the linear program for the

cube. Solving the linear program for the sphere gives bounds for codes in the

sphere (also known as constant weight codes). Bounds on codes in the sphere

lead to bounds for codes in the cube, via the Bassalygo–Elias inequality, reflect-

ing the fact that the sphere (of an appropriate dimension) is a subset of the cube.

Optimizing over the radius of the embedded sphere leads to the second linear

programing bound. The two bounds coincide for relative distance δ ≥ 0.273 . . ..

In the remaining range the second bound is better.

1.3.3. Random codes. There are standard models of random binary codes (see,

e.g., [4]). A random linear code C of length n and (prescribed) dimen-

sion k is chosen as follows: choose k vectors v1, . . . , vk independently at random

from {0, 1}n and take C to be the linear span of these vectors. If k = �Rn�
for some 0 < R < 1, then the following two events hold with probability

tending to 1 with n. The code C has dimension k and minimal distance

d ∈ H−1(1−R) · n± o(n). Shorthand: Here and below we will write ‘with high

probability’ (w.h.p.) as a shorthand for ‘with probability tending to 1 with n’.

We pass to nonlinear codes. Let 0 < R < 1. A random code C of (pre-

scribed) cardinality N = �2Rn� is chosen in two steps. First, we choose N

points x1, . . . , xN independently at random from {0, 1}n. Next, we erase from

this list pairs of points whose distance from each other lies below a certain

threshold. There are several essentially equivalent ways to choose this thresh-

old. The model we use is as follows: Fix a sufficiently small (see the discussion

before the proof of Proposition 1.9) constant τ = τ(R), and define d0 to be the

maximal integer between 1 and N so that

N

2n

d0−1∑
�=0

·
(
n

�

)
≤ τ.

For all 1 ≤ i < j ≤ N such that |xi − xj | ≤ d0 − 1, erase the points xi and xj

from the list x1, . . . , xN . Take C to be the remaining collection of points. The

following two events hold with high probability: C ≥ Ω(N) and the minimal

distance of C is in H−1(1 −R) · n± o(n).
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2. Proof of Theorem 1.1

We consider a code C of length n and distance d = �δn�. In the first part of the

argument we find a nonnegative function φ on {0, 1}n with small support such

that the adjacency matrix A of {0, 1}n acts on φ by multiplying it pointwise

by the factor of at least n− 2d+ 1. We chose this function to be the maximal

eigenfunction of the Hamming ball of an appropriate radius around zero.

Notation: For 0 ≤ r ≤ n, let Br be the Hamming ball of radius r around 0

in {0, 1}n. Let Ar be the adjacency matrix of the subgraph of {0, 1}n induced

by the vertices of Br and let λr be the maximal eigenvalue of Ar.

Clearly, λr is an increasing function of r, with λ0 = 0 and λn = n. Let r0

be the smallest value of r for which the maximal eigenvalue of Λr is at least

n−2d+1. It was shown in [9] (see also Lemma3.3 in [23] for a direct argument)

that λr ≥ 2
√
r(n− r)− o(n). Hence

r0 ≤
(1
2
−
√
δ(1− δ)

)
· n+ o(n).

Abusing notation, we write r for r0 from now on.

Definition 2.1: Let φ = φr be the maximal eigenfunction of Ar with ‖φr‖2 = 1.

(Recall that we consider normalized norms on {0, 1}n, in particular

‖φr‖22 = 〈φr, φr〉 = 1
2n

∑
x∈{0,1}n φ2

r(x).)

Since Br is a connected graph which is invariant under permutations of the

coordinates, the function φr is uniquely defined. It is positive on Br and sym-

metric (φr(S) = φr(|S|), for 0 ≤ |S| ≤ r). We extend φr to the whole space

{0, 1}n by setting φr = 0 outside Br and, abusing notation, write φr for this

extension as well. We record the relevant properties of φr:

(1) φr is supported on Br.

(2) φr is nonnegative and symmetric.

(3) Aφr ≥ λr ·φr ≥ (n− 2d+1) ·φr, with all inequalities holding pointwise

on {0, 1}n.
We use these properties of φr (from now on we write φ for φr) to show that

for the orthogonal projection Λr on the span of the Walsh–Fourier characters

of weight at most r we have dim(〈{Λr(n)δx}x∈C〉) ≥ 1
2d · |C|, proving the claim

of the theorem.
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Let the matrix M = Mr be defined as follows. The rows of M are in-

dexed by the elements of C and the columns by the subsets of [n] of cardi-

nalities 0, . . . , r, arranged in increasing order of cardinalities (but otherwise

arbitrarily). For y ∈ C and S ⊆ [n], let M(y, S) = WS(y) = (−1)〈y,S〉 (view-

ing S as an element of {0, 1}n). Observe that the row of M indexed by x ∈ C

contains the non-vanishing part of the Fourier expansion of 2n · Λr(δx), and

hence the rank of M equals dim(〈{Λr(n)δx}x∈C〉). Let D be the |Br| × |Br|
diagonal matrix indexed by the subsets of [n] of cardinality at most r, with

D(S, S) = φ(S) for all |S| ≤ r, and let M = MDM t. Then M is a |C| × |C|
matrix whose rank is upper bounded by the rank of M . Hence it suffices to

show that the rank of M is at least 1
2d · |C|. For the remainder of the proof we

write N for |C|, for typographic convenience.

Let λ1, . . . , λN be the eigenvalues of M. We will show that( N∑
i=1

λi

)2

≥ N

2d
·

N∑
i=1

λ2
i .

This will imply that the number of non-zero eigenvalues is at least N/2d, prov-

ing the claim. In fact, let P be this number. Then, by the Cauchy–Schwarz

inequality, (
∑N

i=1 λi)
2 = (

∑P
i=1 λi)

2 ≤ P · ∑P
i=1 λ

2
i = P · ∑N

i=1 λ
2
i . Writing

M = (my,z)y,z∈C , we can write this inequality in terms of the entries of M:(∑
y∈C

my,y

)2

≥ N

2d
·
∑

y,z∈C

m2
y,z.

Let f = 2n · φ̂. By the definition of M, for y, z ∈ C we have

my,z =
∑

S:|S|≤r

φ(S)(−1)〈y+z,S〉 = f(y + z).

So, we need to show that

(5) (2d) ·Nf2(0) ≥
∑

y,z∈C

f2(y + z).

To do this we estimate 〈(Aφ) ∗ φ, 1̂C2〉F in two ways. On one hand,

〈(Aφ) ∗ φ, 1̂C2〉F ≥ (n− 2d+ 1) · 〈φ ∗ φ, 1̂C2〉F
= (n− 2d+ 1) · 〈f2, 1C ∗ 1C〉

=
n− 2d+ 1

22n
·
∑

y,z∈C

f2(y + z).
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We used the first and the second properties of φ in the first step, and Parseval’s

identity in the second step. Note that φ = f̂ . On the other hand,

〈(Aφ) ∗ φ, 1̂C2〉F = 〈(n− 2|x|) · f(x)2, 1C ∗ 1C〉

=
1

22n

∑
y,z∈C

(n− 2|y + z|)f2(y + z)

≤ n

22n
·Nf2(0) +

n− 2d

22n
·

∑
y �=z∈C

f2(y + z)

=
2d

22n
·Nf2(0) +

n− 2d

22n
·
∑

y,z∈C

f2(y + z).

We used Parseval’s identity in the first step, and the fact that C has distance d

in the third step. Combining the two estimates and simplifying gives (5).

3. Proof of Propositions 1.3 and 1.8

The proofs will follow the proof of Theorem 1.1. Somewhat imprecisely speak-

ing, if either of Conjectures 1.2or 1.7 holds, we would be able to replace the

Hamming ball of radius r(n) = (12 −
√

δ(1− δ)) ·n+ o(n) in the argument with

a Hamming ball of radius r(n) − Ω(n). We use the same notation as in the

proof of Theorem 1.1.

We start with a technical lemma, which provides a useful description of the

symmetric function fr = 2nφ̂r (see Definition 2.1). We refer to Section 1.3.1 for

the relevant notions in Fourier analysis on {0, 1}n.
Lemma 3.1: Let 0 ≤ r < n. Then, for any x ∈ {0, 1}n with |x| = n−λr

2 we

have

fr(x) = c · Kr+1(x)

n− λr − 2|x| ,

where Kr+1 is the appropriate Krawtchouk polynomial, and c is a positive

constant.

Proof. We view φr as a function on {0, 1}n. Since it is symmetric and supported

on Br, we can write φr =
∑r

i=0 aiLi, where Li is the characteristic function of

the Hamming sphere of radius i around zero, and the coefficients ai are positive.

Note that

Aφr = λr · φr + (r + 1)arLr+1.
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The extra summand on the right-hand side appears because φr , viewed as a

function on {0, 1}n, vanishes on the Hamming sphere of radius r + 1 around

zero, while Aφr is positive on this set. Multiplying both sides of this equality

by 2n and applying the Fourier transform we have, for x ∈ {0, 1}n:

(n− 2|x|) · fr(x) = λr · fr(x) + (r + 1)arKr+1(x),

which implies the claim of the lemma.

Lemma 3.1 implies the following facts about λr. These facts appear to be

new (at least, we haven’t been able to find them in the literature).

Corollary 3.2: Let 0 ≤ r ≤ n/2. Then

• n−λr

2 is a root of Kr+1, with Kr+1 viewed as the appropriate univariate

real polynomial of degree r + 1.

• λr ∈ 2
√
r(n − r)± o(n).

Proof. In the notation of the proof of Lemma 3.1, we have fr =
∑r

i=0 aiKi.

Viewed as a univariate polynomial, this is a polynomial of degree r, and we

have the identity (n − λr − 2k)fr(k) = Kr+1(k), for all integers k between 0

and n. This means that (n− λr − 2x) · fr(x) = Kr+1(x) for all real x, implying

that n−λr

2 is a root of Kr+1.

In particular, λr ≤ n−2xr+1, where xr+1 is the minimal root of Kr+1. Using

the known estimates on xr+1 (see, e.g., [18]) gives λr ≤ 2
√
r(n − r)−o(n). The

second claim of the corollary follows from this and from the estimate

λr ≥ 2
√
r(n− r) + o(n)

see [9].

3.1. Proof of Proposition 1.3. Fix 0 < δ < 1
2 and assume that Conjec-

ture 1.2 holds for this value of δ. For an integer n, let d = �δn�. Let C be

a linear code of length n and distance d. Let r = r(n) be the minimal radius

of a Hamming ball centered at 0 for which λr ≥ n − 2(1 + ε)d, where ε ≤ ε0

and ε0 = ε0(δ) is the constant specified by Conjecture 1.2. We proceed as in the

proof of Theorem 1.1, using the same notation, but replacing the value r = r0 in

that proof with the new value of r we have chosen. Computing 〈(Aφ)∗φ, 1̂C2〉F
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in two ways, we get, on the one hand,

〈(Aφ) ∗ φ, 1̂C2〉F ≥ λr · 〈φ ∗ φ, 1̂C2〉F = λr · 〈f2, 1C ∗ 1C〉

=
λr

22n
·
∑

y,z∈C

f2(y + z).

On the other hand, assuming without loss of generality that (1 + ε)d is an

integer (which we can with a negligible loss), we have

〈(Aφ) ∗ φ, 1̂C2〉F =〈(n− 2|x|) · f(x)2, 1C ∗ 1C〉

=
1

22n

∑
y,z∈C

(n− 2|y + z|)f2(y + z)

≤ n

22n
·Nf2(0) +

n− 2d

22n
·

∑
y,z∈C,y �=z,|y−z|≤(1+ε)d

f2(y + z)

+
λr − 2

22n
·

∑
y,z∈C,|y−z|>(1+ε)d

f2(y + z).

Combining both estimates, rearranging, and writing for simplicity a larger

expression than needed on the left-hand side of the following inequality, we get

n ·Nf2(0) + n ·
∑

y �=z∈C,|y−z|≤(1+ε)d

f2(y + z) ≥
∑

y,z∈C

f2(y + z).

This means that one of the summands on the left-hand side is at least as

large as 1
2 ·∑y,z∈C f2(y + z). We consider both of these possibilities.

(1) n ·Nf2(0) ≥ 1
2 ·∑y,z∈C f2(y + z).

In this case, we can proceed as in the proof of Theorem 1.1 and

deduce that the rank of the matrix M is at least 1
2n · |C|. On the

other hand, this rank is at most
∑r

i=0 |Bi| ≤ 2H( r
n )·n (where we have

used (4)). Hence

|C| ≤ 2n · 2H( r
n )·n.

Recalling that r = r(n) is the smallest integer with λr ≥ n− 2(1 + ε)d,

and using the second claim of Corollary 3.2, we get that

r ≤ (
1

2
−
√
δ(1− δ)) · n− an,

for some absolute constant a = a(δ). Hence we get an upper bound

on |C| which is exponentially smaller than the first linear programming

bound, completing the proof of the proposition in this case.
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(2) n ·∑y �=z∈C,|y−z|≤(1+ε)d f
2(y + z) ≥ 1

2 ·∑y,z∈C f2(y + z).

This means that for some d ≤ i ≤ (1 + ε)d we have

n2 ·
∑

y,z∈C,|y−z|=i

f2(y + z) ≥
∑

y,z∈C

f2(y + z).

Let A be the |C| × |C| matrix indexed by the elements of C with

A(y, z) =

⎧⎨
⎩f(y + z), |y − z| = i,

0, otherwise.

Then the preceding inequality can be written as n2·Tr(AM) ≥ Tr(M2).

Let F =
∑

x∈|C|, |x|=i f(x)Wx. Since C is a linear code, it is well-

known (and easy to see) that the eigenvectors of A are the restrictions

to C of the Walsh–Fourier characters {Wu}u∈{0,1}n , and the eigenvalue

corresponding to Wu is F (u). Since the restrictions of Wu and Wu′

coincide iff u and u′ are in the same coset of C⊥, the function F is con-

stant on the cosets of C⊥ in {0, 1}n, and the distribution of F in {0, 1}n
is the same as the distribution of the eigenvalues of A in C, provided

both {0, 1}n and C are endowed with uniform probability measure. Let

α = (α1, . . . , αN ) be the vector of eigenvalues of A, viewed as a function

on C. By the preceding discussion, we have that ‖α‖4

‖α‖2
= ‖F‖4

‖F‖2
.

On the other hand, F is a symmetric function whose Fourier trans-

form is supported on the set of vectors of weight i in C. The conditions

of Conjecture 1.2 are satisfied, and since we have assumed the conjecture

to hold we have

‖α‖4
‖α‖2 =

‖F‖4
‖F‖2 ≤ 2cεn+o(n),

where c = c(δ) is the constant specified in the conjecture.

Let λ = (λ1, . . . , λN ) be the vector of eigenvalues of M. Assume

that both α and λ are arranged in decreasing order of values. Note

that Tr(M2) = ‖λ‖22. We also have Tr(AM) ≤ 〈α, λ〉 by [27].2

Hence n2 · Tr(AM) ≥ Tr(M2) implies n2 · 〈α, λ〉 ≥ ‖λ‖22.
Taking everything into account, we have

‖λ‖22 ≤ n2 ·〈α, λ〉 ≤ n2 ·‖α‖4‖λ‖ 4
3
≤ 2cεn+o(n) ·‖α‖2‖λ‖ 4

3
≤ 2cεn+o(n) ·‖λ‖2‖λ‖ 4

3
,

2 Since C is a linear code, the matrices A and M commute, so the result of [27] is not

required. With that we state the argument in higher generality, to apply to general codes

as well.
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where in the second step we use Hölder’s inequality, and in the last step

the elementary fact ‖α‖2 ≤ ‖λ‖2. So we get ‖λ‖2 ≤ 2cεn+o(n) · ‖λ‖ 4
3
.

Let S ⊆ C be the support of λ. Note that |S| = rank(M). Applying

Hölder’s inequality once again (in the second step below), we have

‖λ‖ 4
3
4
3

= 〈λ 4
3 , 1S〉 ≤ ‖λ 4

3 ‖ 3
2
‖1S‖3 = ‖λ‖ 4

3
2

( |S|
|C|

) 1
3

,

implying that rank(M) = |S| ≥ |C| · (‖λ‖ 4
3

‖λ‖2
)4 ≥ |C| · 2−4cεn+o(n). On

the other hand, we have rank(M) = rank(M) ≤ ∑r
i=0

(
n
i

) ≤ 2H( r
n )·n.

So, we get
1

n
log2 |C| ≤ H

( r

n

)
+ 4cε+ o(1).

It remains to analyze the expression on the right-hand side of this in-

equality. Let ρ = r
n , let ρ0 = 1

2−
√
δ(1 − δ), and let g(x) = 2

√
x(1− x).

Note that g(ρ0) = 1− 2δ. Ignoring negligible factors, which we do from

now on in this calculation, we also have g(ρ) = 1 − 2δ − 2δε. Assum-

ing ε is sufficiently small, and using first order approximations, we have

ρ ≈ ρ0 − 2δε
g′(ρ0)

, and hence H(ρ) ≈ H(ρ0) − H′(ρ0)
g′(ρ0)

· 2δε. It is easy to

verify that c = c(δ) = 1
8 · H′(ρ0)

g′(ρ0)
· 2δ, and hence

H
( r

n

)
+ 4cε ≈ H(ρ0)− 4cε = H

(1
2
−
√
δ(1 − δ)

)
− 4cε,

completing the proof of the proposition in this case.

3.2. Proof of Proposition 1.8. Let 0 < δ < 1
2 and assume that Conjec-

ture 1.7 holds for this value of δ. We will assume that there is a sequence of

codes Cn of length n and distance d = �δn� attaining the first linear program-

ming bound and reach a contradiction. Assume then that n is large, and that

C is a code of length n, distance d = �δn�, such that

1

n
log2 |C| ≥ H

(1
2
−
√
δ(1− δ)

)
− o(1).

We follow the same argument as in the proof of Proposition 1.3. It is readily

seen that everything works through if we show that if d ≤ i ≤ (1 + ε)d is such

that n2 · ∑y,z∈C,|y−z|=i f
2(y + z) ≥ ∑

y,z∈C f2(y + z), then the vector α of

eigenvalues of the distance-i graph G(C, i) satisfies ‖α‖4

‖α‖2
≤ 2cεn+o(n). This will

follow from Conjecture 1.7 if we show that G(C, i) is 2o(n)-balanced. This is

what we proceed to show. We start with a technical lemma.
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Lemma 3.3: Let Ks be a Krawtchouk polynomial, for some 1 ≤ s ≤ n
2 . Let a

be a root of Ks, and let g(x) = Ks(x)
x−a . Then:

(1) ‖g‖22 = 1
2n

∑n
i=0

(
n
i

)
g2(i) ≥ 1

n2 · (ns).
(2) For all 0 ≤ k ≤ n we have g2(k) ≤ O(n3) · 2n(ns)

(nk)
.

Proof. Recall (see [17], Sections1and5, for this and for additional properties of

Krawtchouk polynomials used in this proof) that ‖Ks‖22 =
(
n
s

)
, and that all the

roots of Ks lie in the interval (0, n). Hence |k − a| < n for all 0 ≤ k ≤ n, and

the first claim of the lemma follows.

We pass to the second claim of the lemma. It is known that Ks has s simple

roots. Let them be x1 < x2 < · · · < xs, and let a = xm, for some 1 ≤ m ≤ s.

There are two cases to consider. Either k lies inside the root region of Ks, that

is x1 ≤ k ≤ xs, or not. We consider the first case. (The second case is similar

and simpler.) Since ‖Ks‖22 =
(
n
s

)
, for all 0 ≤ i ≤ n we have K2

s (i) ≤ 2n(ns)
(ni)

.

Hence if |k−a| > 1
2 the claim follows immediately. If |k−a| < 1

2 there are again

two cases to consider, k > a and k < a. We consider the first case, the second

is similar. Recall that the distance between any two consecutive roots of Ks is

at least 2. Since a = xm ≤ k < xm + 1
2 , this means that the point k + 1 lies

between xm and xm+1 and it is at distance at least 1
2 from xm+1. This implies

that

∣∣∣ g(k)

g(k + 1)

∣∣∣ = ∏
� �=m

|k − x�|
|k + 1− x�| ≤

xs − xm

xm+1 − k − 1
≤ 2n.

It follows that

g2(k) ≤ 4n2 · g2(k + 1) ≤ 4n2 · 2
n
(
n
s

)(
n

k+1

) ≤ 4n3 · 2
n
(
n
s

)(
n
k

) .

We proceed with the argument. Let (A0, . . . , An) be the distance distribution

vector of C, with Ak = 1
|C| |{(x, y) ∈ C × C, |x− y| = k}|. Note that

·
∑

y,z∈C,|y−z|=i

f2(y + z) = |C|Aif
2(i) ≤ O(n3) · |C|Ai ·

2n
(

n
r+1

)(
n
i

) ,
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where in the second step we have used Lemma 3.1, the first claim of Corol-

lary 3.2, and the second claim of Lemma 3.3. On the other hand, we have

∑
y,z∈C

f2(y + z) = 2n · 〈1C ∗ 1C , f2〉 = 22n · 〈1̂C2
, f̂ ∗ f̂〉F

≥ (2n1̂C(0))
2 · (f ∗ f)(0) = |C|2‖f‖22 ≥

1

n2
|C|2

(
n

r + 1

)
,

where we have used Parseval’s identity in the second step, the fact that f̂ = φ

is nonnegative in the third step, and the first claim of Lemma 3.3 in the fifth

step. This means that n2 ·∑y,z∈C,|y−z|=i f
2(y+ z) ≥ ∑

y,z∈C f2(y+ z) implies

Ai ≥ Ω
( 1

n5

)
· |C|(ni)

2n
≥ 2−o(n) · 2H( 1

2−
√

δ(1−δ))·n ·
(
n
i

)
2n

,

where we have used the assumption that C attains the first linear programming

bound in the second step. Note that this means that the edge density of the

graph G(C, i) is at least 2−o(n) · 2H( 1
2−

√
δ(1−δ))·n · (

n
i)
2n .

(Observe that the preceding discussion provides an additional proof of the

fact ([1]) that a linear code attaining the first linear programming bound must

have (up to a negligible error) as many codewords of some weight close to its

minimal distance as a random code of the same cardinality, see Section 1.1.

It is in fact possible that the above inequality for Ai might have been derived

directly from Corollary1 in [1], but we have not found a ready way to do so.)

Corollary1 in [1] also presents a complementary result: Let C′ be a code

with distance d = �δn�, and with distance distribution (A′
0, . . . , A

′
n). Then for

any d ≤ k ≤ n/2 we have

A′
k ≤ 2o(n) · 2H( 1

2−
√

δ(1−δ))·n ·
(
n
k

)
2n

.

Let now C′ be a subset of C, and consider the subgraph G(C′, i) of G(C, i)

induced by C ′. The edge density of this subgraph is A′
i. Since any subset of a

code with distance d is by itself a code with distance (at least) d, the edge density

of G(C′, i) is upper bounded by 2o(n) · 2H( 1
2−

√
δ(1−δ))·n · (

n
i)
2n . Combined with

the above lower bound on the edge density of G(C, i), this implies that G(C, i)

is 2o(n)-balanced, and conditions of Conjecture 1.7 are satisfied, completing the

proof of the proposition.
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4. Proof of Propositions 1.4 and 1.9

We show that Conjectures 1.2 and 1.7 hold for random codes. (See Section 1.3.3

for the models of random codes we use.) In fact they hold in a strong sense,

and we are allowed to replace the exponential expressions on the right-hand

side of (2) and (3) by absolute constants. We do not attempt to compute the

best possible values of these constants.

4.1. Proof of Proposition 1.4. We start with a technical lemma.

Lemma 4.1: Let 0 < R < 1 be given. There exist positive constants ε = ε(R)

and α = α(R) such that for any integer parameters d, i, t satisfying

• (1− ε)H−1(1−R) · n ≤ d ≤ (1 + ε)H−1(1−R) · n,
• d ≤ i ≤ (1 + ε)d,

• d ≤ t ≤ 2i,

the following holds: Let x ∈ {0, 1}n be of weight t. Let D(x) be the set of all

points y in {0, 1}n for which |y| = |x− y| = i. Then

|D(x)| ≤ 2(1−R−α)·n.

Proof. It is easy to see that |D(x)| = (
t
t
2

)(
n−t
i− t

2

)
, with the understanding that

the binomial coefficient
(
b
a

)
is 0 unless a, b are integers and 0 ≤ a ≤ b.

Writing δ = d
n , ξ = i

n , and τ = t
n , and using (4), it suffices to show

that τ + (1 − τ)H(2ξ−τ
2−2τ ) < 1−R on the compact domain Ω = {(δ, ξ, τ) ⊆ R3}

given by

• (1− ε)H−1(1−R) ≤ δ ≤ (1 + ε)H−1(1−R),

• δ ≤ ξ ≤ (1 + ε)δ,

• δ ≤ τ ≤ 2ξ.

It is easy to see that for any 0 < R < 1, if ε = ε(R) is sufficiently small

then all the partial derivatives of f(ξ, τ) = τ + (1 − τ)H( 2ξ−τ
2−2τ ) are uniformly

bounded from above on Ω, and hence it suffices to prove that f(δ, τ) < 1 − R

for δ ≤ τ ≤ 2δ, where 0 < R < 1 and δ = H−1(1−R). Alternatively, it suffices

to prove that the function g(δ, τ) = τ + (1− τ)H(2δ−τ
2−2τ )−H(δ) is non-positive

on {(δ, τ) : 0 ≤ δ ≤ 1
2 ; δ ≤ τ ≤ 2δ}, and that g(δ, τ) = 0 only if δ = 0 or δ = 1

2 .

We will do this in two steps. First, we claim that g(δ, τ) does not increase

in τ , for any value of δ. We have, after simplifying, that

∂g

∂τ
= 1−H

(2δ − τ

2− 2τ

)
− 1− 2δ

2− 2τ
log2

(2− 2δ − τ

2δ − τ

)
.
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Let x = 2δ−τ
2−2τ . Then the above expression is 1−H(x)− (12 − x) log2(

1−x
x ). It

is easy to see that

H(x) +
(1
2
− x

)
log2

(1− x

x

)
=

1

2
log2

( 1

x(1 − x)

)
≥ 1,

and hence ∂g
∂τ ≤ 0.

So it suffices to show that h(δ) = g(δ, δ) is non-positive on 0 ≤ δ ≤ 1
2 , and

that h(δ) = 0 only if δ = 0 or δ = 1
2 . We have

h(δ) = δ + (1 − δ)H
( δ

2− 2δ

)
−H(δ)

= 1 +
δ

2
log2(δ) + (2− 2δ) log2(1− δ)− 2− 3δ

2
log2(2− 3δ).

It is easy to see that h(0) = h(12 ) = 0. We will show that there exists

0 < δ0 < 1
2 such that h′ < 0 for 0 ≤ δ < δ0 and h′ > 0 for δ0 < δ ≤ 1

2 . This will

imply that h(δ) < 0 for any 0 < δ < 1
2 .

A simple calculation gives

h′(δ) =
1

2
log2

(δ(2− 3δ)3

(1 − δ)4

)
.

Let P (δ) = δ(2−3δ)3−(1−δ)4. We need to show that there exists 0 < δ0 < 1
2

such that P (δ) < 0 for 0 ≤ δ < δ0 and P (δ) > 0 for δ0 < δ ≤ 1
2 . It is

easy to verify that P (δ) = (1 − 2δ)(14δ3 − 22δ2 + 10δ − 1). So it suffices

to show this property for Q(δ) = 14δ3 − 22δ2 + 10δ − 1. The derivative Q′

is a quadratic, and it is easy to see that it is strictly decreasing on [0, 1
2 ], and

moreover thatQ′(0) > 0 and thatQ′(12 ) < 0. This means thatQ is unimodal—it

increases up to some point in [0, 1
2 ] and then decreases. Moreover, Q(0)=−1<0

and Q(12 ) =
1
4 > 0. This verifies the required property for Q, and completes the

proof of the lemma.

We proceed with the proof of the proposition. Let f be a function on {0, 1}n,
and let A be the Fourier support of f . By Proposition1.1 in [15] we have(‖f‖4

‖f‖2
)4

≤ max
x∈A+A

|{(y, z) ∈ A×A, y + z = x}|.

So it suffices to show that there exists a positive constant K = K(R) such

that the following holds with probability tending to 1 with n for a random

linear code C of dimension �Rn�. Let d be the minimal distance of C, let

d ≤ i ≤ (1 + ε)d, where ε = ε(R) is the constant from Lemma 4.1, and let A be
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the set of vectors of weight i in C. Assume A = ∅. Let f be a function whose

Fourier transform is supported on A. Then

max
x∈A+A

|{(y, z) ∈ A×A, y + z = x}| ≤ K.

Recall that w.h.p. the minimal distance d of C satisfies

d0 − o(n) ≤ d ≤ d0 + o(n),

where d0 = d0(n) = H−1(1−R) ·n. Assume from now on that this is indeed the

case. This means that the points x we need to consider are such that x = y+z for

some points y, z ∈ {0, 1}n with |y| = |z| = i, for some d0 − o(n) ≤ i ≤ (1+ ε)d0.

Using the union bound, it suffices to show for any suitable value of i and for

any such point x the probability over C that

|{(y, z) ∈ C × C, |y| = |z| = i, y + z = x}| > K,

for a sufficiently large constant K is o( 1
n2n ).

Fix i and x. Let |x| = t. As in Lemma 4.1, let D(x) be the set of all points y

in {0, 1}n for which |y| = |x− y| = i. Note that

|{(y, z) ∈ C × C, |y| = |z| = i, y + z = x}| ≤ |D(x) ∩C|.

So it suffices to upper-bound |D(x) ∩ C|. We proceed to do this. For a subset

D ⊆ {0, 1}n and for an integer parameter m, if |D ∩ C| ≥ 2m, then C contains

at least m linearly independent elements of D. It is well-known (and easy to

see) that the probability of a random linear code C of a given cardinality to

contain m given linearly independent vectors is at most ( |C|
2n )m, and hence, by

the union bound,

PrC{|D ∩ C| ≥ 2m} ≤
(|D|
m

)( |C|
2n

)m

<

( |C||D|
2n

)m

.

Let nowD = D(x). The parameters d, i, t satisfy the conditions of Lemma 3.3,

and hence, by the lemma, |C||D|
2n ≤ 2−αn, for some positive constant α = α(R).

Hence, for m = �2/α�, we get

PrC{|D ∩C| ≥ 2m} ≤ 2−αmn ≤ 2−2n ≤ o
( 1

n2n

)
,

as needed. To conclude, the proposition holds with K = 2�2/α and ε0 = ε,

where α and ε are given by Lemma 4.1.
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4.2. Proof of Proposition 1.9. Let 0 < R < 1. In the following two lem-

mas we list some simple properties of random codes of prescribed cardinality

N = �2Rn� chosen according to the model described in Section 1.3.3. (We be-

lieve all of these properties to be well-known, but we haven’t been able to find

a proper reference in the literature.)

Before stating the lemmas, let us make some remarks about the parameters

τ = τ(R) and d0 = d0(R, n) in the model. The constant τ is chosen to be

sufficiently small so that all the constants appearing in the following statements

which depend linearly on τ will be smaller than 1
2 and so that θ =

( n
d0
)N

2n is at

most 1
2 as well. It is easy to see that it is possible to choose τ appropriately.

We also note that θ is an absolute constant depending on R and that

H−1(1−R) · n− o(n) ≤ d0 ≤ H−1(1−R) · n+ o(n).

We will show that the following properties hold with probability tending to 1

with n for a random code C of length n and prescribed cardinality N = �2Rn�.
We denote by d the minimal distance of C.

Lemma 4.2: (1) |C| ≥ (1−O(τ) − o(1)) ·N .

(2) For any d ≤ k ≤ n
2 the number of pairs of points in C at distance k from

each other lies between (1−O(τ)− o(1)) · (
N
2 )(

n
k)

2n and (1+ o(1)) · (
N
2 )(

n
k)

2n .

(3) d = d0.

Lemma 4.3: Let d ≤ k ≤ n
2 . For x ∈ C, let

Dx,k := |{y ∈ C, |x − y| = k}|.

Then

ExD
2
x,k

(Ex Dx,k)2
≤ O

(1
θ

)
,

where the expectations are taken with respect to the uniform probability dis-

tribution on C, and θ =
( n
d0
)N

2n .

We will first prove the proposition assuming Lemmas 4.2 and 4.3 to hold,

and then prove the lemmas. From now on let ε = ε(R) be the constant in

Lemma 4.1.

We will need another technical lemma.
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Lemma 4.4: Let d0 ≤ i ≤ (1 + ε)d0. For x, y ∈ {0, 1}n, let

Mx,y = |{z ∈ C, |x− z| = |y − z| = i}|.
Then with probability at least 1− o( 1

n ) we have

max
x,y∈C

Mx,y ≤ K1,

for some absolute constant K1 = K1(R).

Proof. Let C̃ = {x1, . . . , xN} be a list of N points chosen independently at

random from {0, 1}n. Clearly, it suffices to prove that there exists a constant K1

such that with high probability for any {i, j} ⊆ [N ] we have |Mxi,xj | ≤ K1. By

symmetry, and by the union bound, it suffices to show that

PrC̃{|Mx1,x2 | > K1} <
1

nN2
,

where we may assume that |x1 − x2| ≥ d0. Fix x1 and x2. Let |x1 − x2| = t

for some d0 ≤ t ≤ 2i and let D = D(x, y) be the set of all points in {0, 1}n at

distance i from both x and y. Then |D| = (
t
t
2

)(
n−t
i− t

2

)
. Let C̃1 = {x3, . . . , xN}.

For any integer m ≥ 1 we have that

PrC̃{|Mx,y| ≥ m} = PrC̃1
{|C̃1 ∩D| ≥ m} ≤

(|D|
m

)
·
( |C̃1|

2n

)m

<

(
ND

2n

)m

.

By Lemma 4.1, ND
2n ≤ 2−αn, for a positive absolute constant α, and hence

for K1 = 3
α , we have Pr{|Mx,y| > K1} < 2−3n < 1

nN2 , and the claim of the

lemma holds with this value of K1.

We proceed to prove the proposition. Let d0 ≤ i ≤ (1 + ε)d0, and let

B be the adjacency matrix of the graph G(C, i). Let λ be the vector of

eigenvalues of B. Recall the notation Dx,i := |{y ∈ C, |x − y| = i}| and

Mx,y = |{z ∈ C, |x − z| = |y − z| = i}|. We have

‖λ‖22 =
1

|C|
|C|∑
i=1

λ2
i =

1

|C|
∑

x,y∈C

B2(x, y)

=
1

|C| |{(x, y) ∈ C × C, |x− y| = i}|

= E
x∈C

Dx,i.
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For the following calculation, let g(z) = 1|z|=i. Then for any x, y ∈ C we

have B(x, y) = g(x + y). Hence, using the Cauchy–Schwarz inequality in the

fourth step below,

‖λ‖44 =
1

|C|
|C|∑
i=1

λ4
i =

1

|C|
∑

x,y∈C

(∑
z∈C

B(x, z)B(z, y)

)2

=
1

|C|
∑

x,y∈C

(∑
z∈C

g(x+ z)g(y + z)

)2

≤ 1

|C|
∑

x,y∈C

Mx,y

∑
z∈C

g2(x+ z)g2(y + z)

≤ maxx,y∈C Mx,y

|C| ·
∑

x,y∈C

∑
z∈C

g2(x+ z)g2(y + z)

=
maxx,y∈C Mx,y

|C| ·
∑
z∈C

( ∑
x∈C

g2(x + z)

)2

= ( max
x,y∈C

Mx,y) · E
z∈C

D2
z,i.

It follows that (‖λ‖4
‖λ‖2

)4

≤ ( max
x,y∈C

Mx,y) · Ez D
2
x

(Ez Dz)2
.

Lemmas 4.3 and 4.4 imply that with probability tending to 1 with n the

right-hand side of the last inequality is bounded from above by O(1θ ·K1) for all

d0≤ i≤(1+ε)d0, and the proposition holds with K=O(1θ ·K1) and ε0=ε.

We proceed with the proofs of Lemmas 4.2 and 4.3.

4.2.1. Proof of Lemmas 4.2 and 4.3. We need the following technical claim.

Lemma 4.5: Let C̃ = {x1, . . . , xN} be a list of N points chosen independently

at random from {0, 1}n. Let M =
(
N
2

)
, and for 0 ≤ � ≤ n let p� =

(n�)
2n .

(1) For 0 ≤ � ≤ n let X� be the random variable counting the number of

pairs of indices 1 ≤ i < j ≤ N with |xi − xj | = �. Then EX� = Mp�,

and σ2(X�) = Mp�(1 − p�).

(2) For d0 ≤ � ≤ n
2 , let Y� be the random variable counting the number of

triples of distinct indices {a, b, c} ⊆ [N ] such that one of the three pair-

wise distances among the points xa, xb, xc is � and one is at most d0 − 1.

Then EY� ≤ O(τ ·Mp�), and σ2(Y�) ≤ O(τMp� + τM3/2p2�).
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Proof. For {i, j} ⊆ N let Z{i,j} be the indicator random variable which verifies

whether |xi − xj | = �. Clearly

PrC̃{Z{i,j} = 1} =

(
n
�

)
2n

= p�.

The first claim of the lemma follows from the fact that there are M such vari-

ables, and (as observed e.g., in [4]) they are pairwise independent.

We pass to the second claim of the lemma. For {a, b, c} ⊆ N let Z{a,b,c} be

the indicator random variable which verifies whether one of the three pairwise

distances among the points xa, xb, xc is � and one is at most d0 − 1. We have,

by the pairwise independence of the distances |xa−xb|, |xa−xc|, and |xb −xc|,
that

E
C̃
Y� =

∑
{a,b,c}⊆N

E
C̃
Z{a,b,c} ≤ O

(
N3 · (

∑d0−1
k=0

(
n
k

)
) · (n�)

22n

)

≤ O

(
Mp� ·N

∑d0−1
k=0

(
n
k

)
2n

)
≤ O(τ ·Mp�),

where the last step follows from the choice of d0.

Next, observe that for {a, b, c}, {a′, b′, c′} ⊆ N the random variables Z{a,b,c}
and Z{a′,b′,c′} are independent unless |{a, b, c} ∩ {a′, b′, c′}| ≥ 2. Hence

σ2(Y�) = EY 2
� − (E Y�)

2

=
∑

{a,b,c},{a′,b′,c′}
(EZ{a,b,c} · Z{a′,b′,c′} − EZ{a,b,c} · EZ{a′,b′,c′})

=
∑

|{a,b,c}∩{a′,b′,c′}|≥2

(EZ{a,b,c} · Z{a′,b′,c′} − EZ{a,b,c} · EZ{a′,b′,c′})

≤
∑

|{a,b,c}∩{a′,b′,c′}|≥2

EZ{a,b,c} · Z{a′,b′,c′}

=
∑

{a,b,c}
E
C̃
Z{a,b,c} +

∑
|{a,b,c}∩{a′,b′,c′}|=2

EZ{a,b,c} · Z{a′,b′,c′}.

The first summand in the last expression is at most O(τ ·Mp�). We pass to the

second summand. There are two possible cases we need to consider, depending

on whether
∑d0−1

k=0

(
n
k

)
is smaller than

(
n
�

)
. Assume first that it is indeed smaller.

For {a, b, c, d} ⊆ N let W{a,b,c,d} be the indicator random variable which verifies

whether there are two among the four points at distance at most d0 − 1, and
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each of the two remaining points is at distance � from one of the first two. It is

easy to see that the second summand is upper bounded by

O

( ∑
{a,b,c,d}⊆N

EWa,b,c,d

)
≤O

(
N4p2�

∑d0−1
k=0

(
n
k

)
2n

)
≤ O(τN3p2�) = O(τM3/2p2�).

If
∑d0−1

k=0

(
n
k

)
is larger than

(
n
�

)
, a similar computation shows that the second sum-

mand is upper bounded by O(τ2·Mp�), completing the proof of the lemma.

We can now prove Lemma 4.2.

Proof of Lemma 4.2. The first claim of the lemma follows by the Chebyshev

inequality from the first claim of Lemma 4.5 (and the definition of d0). The

third claim of the lemma follows from its second claim. We pass to the second

claim. Fix d ≤ k ≤ n
2 . Observe first that by the first claim of Lemma 4.5

and the Chebyshev inequality, the number of pairs of points in C̃ at distance

k from each other lies between (1 − o(1)) · Mpk and (1 + o(1)) · Mpk with

probability at least 1−o( 1n ). Next, note that the number of pairs of points in C̃

at distance k from each other removed in the erasure step is at most O(Yk). By

the second claim of Lemma 4.5 and the Chebyshev inequality, Yk ≤ O(τMpk)

with probability at least 1 − o( 1n ), and the second claim of the lemma follows,

by the union bound over all possible values of k.

We pass to the proof of Lemma 4.3.

Proof of Lemma 4.3. Fix d ≤ k ≤ n
2 . We will show that

PrC

{ ExD
2
x,k

(ExDx,k)2
≤ O

(1
θ

)}
≥ 1− o

( 1

n

)
,

and the claim of the lemma will follow by the union bound over all possible val-

ues of k. For notational convenience we will write Dx for Dx,k in the remainder

of the proof, and we will write ‘with high probability’ (w.h.p.) for probability

at least 1− o( 1n ).

First, we have that
∑

x∈C Dx =
∑

x∈C |{y ∈ C, |x + y| = k}| is the number

of pairs of points in C at distance k from each other. As observed in the proof

of the second claim of Lemma 4.2, this number is w.h.p. at least Ω(Mpk). This

implies that Ex Dx = 1
|C|

∑
x∈C Dx ≥ Ω(Npk), and hence (ExDx)

2 ≥ Ω(N2p2k).

We will show that w.h.p. ExD
2
x ≤ O(1θ · N2p2k), and this will imply the claim

of the lemma.
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Let C̃ = {x1, . . . , xN} be a list of N points chosen independently at ran-

dom from {0, 1}n. For i ∈ [N ], let D̃i be the number of indices j ∈ [N ] so

that |xi − xj | = k. It suffices to show that w.h.p.
∑N

i=1 D̃
2
i ≤ O(1θ ·N3p2k). We

proceed similarly to the proof of Lemma 4.5. Let S =
∑N

i=1 D̃
2
i . For {i, j} ⊆ N

let Z{i,j} be the indicator random variable which verifies whether |xi−xj | = k.

We have that

E
C̃
S = E

C̃

N∑
i=1

( N∑
j=1

Zi,j

)2

=

N∑
i=1

N∑
j1,j2=1

E
C̃
(Zi,j1 · Zi,j2)

=

N∑
i=1

N∑
j=1

E
C̃
Zi,j +

N∑
i=1

∑
j1 �=j2

E
C̃
Zi,j1 ·EC̃Zi,j2 ≤ O(N2pk) +O(N3p2k).

Note that since d0 ≤ k ≤ n
2 , we have that Npk ≥ Npd0 ≥ θ and hence the

bound above is at most O(1θ ·N3p2k).

Next, we claim that σ2(S) ≤ O(N4p3k). The argument for this estimate is

very similar to that for the bound on the variance of Y� in the proof of the

second claim of Lemma 4.5 and we omit it. This bound on the variance implies,

via Chebyshev’s inequality, that w.h.p. S ≤ O(1θ ·N3p2k), completing the proof

of the lemma.
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