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ABSTRACT. We compute upper bounds on the maximal size of a binary linear code of
length n 1000, dimension k, and distance d For each value of d, the bound is found by
solving the Delsarte linear programming problem. Relying on the results of the calcula-
tions, we discuss the known bounds on the size of codes and some recent conjectures made
about them. The most important conclusion is that Delsarte’s linear programming method
is unlikely to yield major improvements of the known general upper bounds on the size of
codes.

1. Introduction: bounds on codes

A code C is a subset of the binary Hamming space Hn
2 . The minimum distance between

a pair of distinct points in C is called the distance of C, denoted d C One of the main
problems of coding theory is to find the maximal size A n d of a code with given distance
d. This problem is solved exactly only for some small values of n and d. The general
results known are in the form of upper and lower bounds.

The aim of this paper is to explore the limits of Delsarte’s linear programming (or
polynomial) method of deriving upper bounds on A n d After explaining the method and
citing the best known general bounds, we present the results of calculations for n 1000
Based on them, we speculate that the bounds currently known are likely to be close to the
limits of Delsarte’s method.

The best known lower bound (the Varshamov-Gilbert or VG bound) can be stated in
the following form: Let M be the maximal number such that

M 1
d 1

i 0

n
i

2n

Then there exists a code C of length n with d C d and C M

On the other hand, for any code,

C
2n d 1 2

i 0
n
i d odd

2n 1 d 2 2
i 0

n 1
i d even;

(1)

this is the Hamming bound.
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The best known upper bounds are derived by Delsarte’s linear programming method
[4], [5]. We have

A n d 1 max
n

i d

Ai(2)

Ai 0 d i n ;
n

i 1
AiKk n i

n
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0 k n

Here Kk n x is a Krawtchouk polynomial,

Kk n x
n

i 0
1 i x

i
n x
k i

Problem (2) in the dual form can be formulated as follows:

A n d D d : inf
f

f 0 :
n

i 0
f i n

i 2n; f i 0 i d d 1 n(3)

where the infimum is taken over all polynomials f x with nonnegative Fourier-
Krawtchouk coefficients.

This method is often useful to derive bounds for specific values of n and d General
upper bounds on A n d i.e., those valid for any n, are derived by exposing a polynomial
feasible with respect to the conditions in (3). The best known bounds are due to McEliece,
Rodemich, Rumsey, and Welch (MRRW) [11] and Levenshtein [9]. Denote by xt n the
first zero of Kt n x It is known that

xt n 1 xt n xt 1 n 1

t 1 n 1; we also put xt n : n 1; xn 1 n : 0. The first of the two MRRW
bounds has the form

A n d
n
t

n 1 2

2a t 1
(4)

where d xt 1 n and a xt 1 n xt n is the root of Kt n x Kt 1 n x

Levenshtein’s bound is of the following form (see also[10]):

A n d Ln d(5)

where

Ln d
Lk n d if xk n 1 1 d xk 1 n 2 1

2Lk n 1 d if xk n 2 1 d xk n 1 1

and

Lk n z
k
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Kk 1 n 1 z 1
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This bound for many finite values of n d is better than (4).

Both (4) and (5) admit improvements based on the inequality

A n d min
w

2n

n
w

A n d w(6)

where A n d w is the maximal size of a constant weight code with distance d and weight
of all vectors w, and the minimum is taken over all integer w between 0 and n 2. Bounds
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on A n d w in [11] and [9] involve the extremal zero yt n w of a dual Hahn polyno-
mial of degree t (this family of polynomials is orthogonal on 0 1 w with weight

w
i

n w
i

n
w ). In particular, the result in [11] has the form

A n d w
n
t

n2 2t 1 n 2t 2 w t n w t
yt 1 n w t 1 n t 1 n 2t 1 n 2t n 2t 1

(7)

where t is such that d 2yt n w Inequalities (6)-(7) together form the second MRRW
bound on A n d It is often better than (4), though notably more difficult to compute.
Therefore, more specific comparison is easier for the asymptotic versions of these bounds.
We do not formulate Levenshtein’s bounds on A n d w since they are not used below.

Let us also cite the asymptotical behavior of these bounds. For this purpose, let

R limsup
n

1
n

log2 A n d

where the limit is computed over all sequences of codes with lim d n Then by the
VG bound

R Rvg : 1 H(8)

where H is the binary entropy function.

The asymptotic form of the MRRW bounds is as follows:

R Rm1 : H
1
2

1(9)

R Rm2 : min
0 u 1 2

1 g u2 g u2 2 u 2(10)

where g x H 1 1 x 2 It is known [11] that Rm2 Rm1 with equality for all
0 273 1 2 . Levenshtein’s bounds for large n also converge to Rm1 and Rm2 respectively.

Tightening the gap between the lower and upper bounds is the main problem of as-
ymptotic coding theory. It is also far from solution. Until recently it was not even known
whether Delsarte’s method can lead to the proof of the (asymptotic) tightness of the VG
bound. In 1998 A. Samorodnitsky [12] proved that

1 n log2 D n Rvg Rm1 2(11)

resolving this question in the negative, and conjectured that asymptotically this inequality
is tight. This conjecture, if true, would imply that R Rvg Rm1 2 The present study
is to some extent motivated by this result and conjecture.

2. n 1000

2.1. Results. Here we present the results of the calculations. For n 1000 and a
given d we solved the linear programming problem (2). Two essential limitations of the
calculations are as follows. Due to time constraints we were not able to deal with d odd
or d 43 Further, we only looked for the maximal k such that the existence of a linear
n 2k d code does not contradict the inequalities in Delsarte’s problem (2). This assump-

tion simplified the calculations considerably; see also the next section. While we cannot
make any claims on the maximum of (2) with linearity restriction lifted, the results for
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linear codes are so close to the upper bounds cited that this question seems irrelevant. The
results are most easily visualized by plotting the curves in coordinates R see Fig. 1, 2.

We also give a short table of the bounds. Some of the formulas computed in the table
were stated above as bounds on the size of the code rather than on R . In this case we
compute the binary log of the answer and normalize it by n. The line typeset in boldface
gives the results of our calculations of the maximum in (2).

d n 0.05 0.01 0.15 0.2 0.25 0.3 0.35 0.4 0.45
(4) 0.881 0.750 0.624 0.502 0.391 0.287 0.196 0.115 0.057
(5) 0.878 0.748 0.621 0.501 0.387 0.283 0.191 0.115 0.0505
(1) 0.839 0.722 0.624 0.539 0.464 0.397 0.338 0.285 0.237
(2) 0.839 0.712 0.597 0.488 0.380 0.280 0.188 0.109 0.047
(9) 0.858 0.722 0.592 0.469 0.355 0.250 0.158 0.082 0.025
(10) 0.825 0.693 0.573 0.461 0.354 0.250 0.158 0.082 0.025
(11) 0.786 0.626 0.491 0.374 0.272 0.184 0.112 0.055 0.016
(8) 0.714 0.531 0.390 0.278 0.189 0.199 0.066 0.029 0.007

Here in the upper half we have collected the bounds for n 1000: (top to bottom) the
nonasymptotic MRRWI, Levenshtein’s, Hamming, and a solution of the LP problem. In
the lower half we show the asymptotic 1st and 2nd MRRW bounds, Samorodnistky’s con-
jectured answer, and the GV bound. For small d n the agreement of the computed solution
for the LP problem and the Hamming bound (1) is very good:

d n 0.044 0.046 0.048 0.05 0.052 .054 0.56
Hamming 0.8554 0.8500 0.8446 0.8393 0.8340 0.8287 0.8236

LP n 1000 0.855 0.849 0.844 0.839 0.833 0.828 0.823

2.2. Comments. The results for n 1000 follow the known bounds rather closely,
both for large and in the range where (7) provides improvements over (4). Therefore,
though the bounds most likely are not the best possible for finite n d it is likely that the
asymptotic MRRW bounds give the exact answer in the asymptotic Delsarte problem. The
results do not, therefore, support Samorodnitsky’s conjecture on the exponential behavior
of D n

This leaves us in a rather uncomfortable situation with respect to finding R Namely,
Delsarte’s method is by far the most powerful method known in deriving upper bounds on
this function; on the other hand it seems unlikely that the upper bounds (9)-(10) can be
significantly improved within the frame of this method. So at present there seem to be no
ideas around that would lead to tightening the gap between (8) and (10).
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Another important parameter of a code is its distance distribution. Let us cite the
values of an optimal assignment of variables Ad An in the LP problem for d 350.
Again the easiest way to present the results is to plot them. We take the set of binomial
probabilities w

n
w 2k n d w n as a reference distance distribution. The reason for

this is that w is the average distance distribution of a code chosen in Hn
2 with uniform

probability. Sequences of codes whose distance distribution is asymptotically binomial are
known to exist and have a number of interesting properties. Therefore, we plot the num-
bers 1 n log2 Aw and 1 n log2 w with w n on the x-axis. This plot is shown in Fig. 3.
The results are in good accord with a theorem in [1] that asserts that codes meeting the
MRRW bounds, if they exist, must have distance spectrum that converges to the binomial
distribution.

3. Details on computations

In this section we explain how the data for n 1000 was derived. In short, the program
Split was used to mechanize the computations. For example, in Split, the following
commands

type [1000,502,194_2];
via lp [current] = ;
type [1000,501,194_2];
!via lp [current] = ;

instruct the program to attempt to show that:

There is no even binary linear code with parameters n 1000, k 502, d 194,
and hence no binary linear code (even or not) with these parameters. This is ac-
complished by linear programming.
By linear programming one cannot show that there is no even binary linear code
with parameters n 1000, k 501, d 194.

The program performs these linear programming calculations using the simplex
method, with floating point arithmetic (at a sufficiently high level of precision), and then
verifies the conclusions using exact arithmetic. Thus, barring a programming error, the
calculations are guaranteed to be correct.1

Split uses its own implementation of the simplex method, because commercial lin-
ear programming solvers do not support the high level of precision needed for the calcu-
lations, which is roughly ten to twenty times double precision. While the simplex method
is still an excellent method for solving linear programs, the implementation in Split
is primitive by comparison with the implementations in the commercial solvers (such as
CPLEX), apart from their inability to calculate at high precision. Consequently, the cal-
culations were far slower than they would be otherwise. As d decreased, the calculations
became more and more time-consuming. For example, a single calculation for d 400
took about an hour, whereas a single calculation for d 50 took about 200 hours (using
one 500 MhZ Alpha 21264 processor). This explains why the calculations terminate at
d 44.

1Owing to time and memory restrictions, not all the calculations of the second type were verified. But in all
cases where they were verified, no inconsistency was observed.
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In principle exactly the same method could be used to bound unrestricted binary codes,
in which case we would fix n 1000 and some d, and try to bound the number M of
codewords. However, owing to the particular implementation of the simplex method in
Split, it is easier to answer questions of the form “Is M C?” or “Is M C?” for fixed
C, than to find M directly. Since in the linear case one need only use C values which are
powers of 2, the calculations are easier.

More information about Split may be found in [6], [7], [8], [2], and [3].

Color plots of the data for n 1000 may be found on the second author’s webpage,
http://www.math.unl.edu/˜djaffe.
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FIGURE 1. Bounds for low distances. The curve with marked dots rep-
resents the data for n 1000 computed by (2). Nonasymptotic bounds
(n 1000): (a) MRRW bound (4), (b) Levenshtein’s bound (5), (c) Ham-
ming bound (1); Asymptotic upper bounds: (d) (9), (e) (10), (f) conjec-
tured logarithmic asymptotics of D n (11), (g) the Varshamov-Gilbert
bound.
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FIGURE 2. Bounds on codes: (a) data for n 1000 computed by (2),
(b) MRRW bound (4) for n 1000, (c) (10), (d) (9), (e) (11), (f) the
Varshamov-Gilbert bound.
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FIGURE 3. Optimal assignment of variables for d 320 k 188 (dots)
and binomial distribution (solid curve).


